Adsorption From Aqueous Solution


Adsorption From Aqueous Solutionpubs.acs.org/doi/pdf/10.1021/ba-1968-0079.ch011Similarby FG GREENWOOD - ‎Cited by 28 -...

2 downloads 148 Views 882KB Size

11 Adsorption and Wetting Phenomena Associated with Graphon in Aqueous Surfactant Solutions

Downloaded by CORNELL UNIV on October 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch011

F . G . G R E E N W O O D , G . D . P A R F I T T , N . H. P I C T O N , and D. G. WHARTON University of Nottingham, Nottingham, E n g l a n d

Adsorption dodecyl

isotherms sulfate

0.1 M

from

from

sodium

chloride,

also

dispersibility

studies the

trolled

by

angle measurements

characteristics powder value

of the

is readily

the solution comes <

bromide

as

electrolyte. solutions

density of

dispersions

Comparison

dispersed

A fairly

with

is not of

the

discrete

ions is necessary by end-over-end

of ionic

strength,

for which

and

trimethyl-

various

properties

sodium

cocon-

system.

were made to assess the

systems.

concentration

dodecyl

in the

shaking.

of surfactant

is independent

for solutions

that dispersibility

electrochemical

coverage

for

the optical

confirms

Contact surface

powder

from end-over-end

agulation

aqueous

using potassium of the

was assessed by measuring resulting

were determined

Graphon

- a m m o n i u m bromide The

at 25°

on

wetting value

before

action.

of the This

and corresponds the contact

angle

to be-

90°.

> X h e p r o b l e m of i n c o r p o r a t i n g a p o w d e r i n t o a l i q u i d to f o r m a d i s p e r i

sion of fine particles is a n i m p o r t a n t aspect of c o l l o i d c h e m i s t r y . T h e o v e r a l l process m a y be c o n s i d e r e d as c o n s i s t i n g of three stages: 1. W e t t i n g of t h e p o w d e r . P o w d e r s consist of aggregates a n d a g ­ glomerates ( t w o w a y s of d e f i n i n g clusters of p r i m a r y p a r t i c l e s ( 9 ) ) so not o n l y the w e t t i n g of the e x t e r n a l surfaces b u t also the d i s p l a c e m e n t of a i r a n d w e t t i n g of the i n t e r n a l surfaces ( b e t w e e n the p a r t i c l e s i n the clusters) m u s t b e c o n s i d e r e d . T h e effectiveness of the w e t t i n g process m a y b e expressed i n terms of t h e s o l i d / l i q u i d / v a p o r contact angle w h i c h m u s t b e zero for spontaneous w e t t i n g of the e x t e r n a l surface (14), a n d less t h a n 90° for spontaneous p e n e t r a t i o n i n t o the agglomerates ( I ) . 135

Weber and Matijevi; Adsorption From Aqueous Solution Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

136

ADSORPTION F R O M

AQUEOUS SOLUTION

Downloaded by CORNELL UNIV on October 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch011

2. B r e a k i n g u p the aggregates a n d agglomerates i n t o c o l l o i d a l p a r ­ ticles. I d e a l l y the w o r k r e q u i r e d to c o m p l e t e this stage s h o u l d b e as s m a l l as possible, a l t h o u g h i n some cases large energies m a y b e i n v o l v e d d e p e n d i n g o n the strength of the b o n d h o l d i n g the p r i m a r y particles together i n the clusters. F o r the systems c o n s i d e r e d i n this p a p e r little effort is a p p a r e n t l y r e q u i r e d for this stage. It has b e e n suggested (16) that the resistance to stress of p a r t i c l e - p a r t i c l e b o n d s c a n be significantly r e d u c e d b y the a d d i t i o n of surface active m a t e r i a l b u t the m e c h a n i s m of the process is not established. 3. C o a g u l a t i o n ( r e d u c t i o n i n p a r t i c l e n u m b e r w i t h t i m e d u e to i r r e v e r s i b l e c o l l i s i o n s ) of the d i s p e r s i o n . T h e resistance to c o a g u l a t i o n , or the s t a b i l i t y of the d i s p e r s i o n , depends o n the r e l a t i v e m a g n i t u d e s of the attractive v a n der W a a l s forces b e t w e e n the p a r t i c l e s , a n d the r e p u l ­ sive force w h i c h i n a system i n v o l v i n g c h a r g e d particles m a y b e asso­ c i a t e d w i t h the o v e r l a p p i n g of t h e i r e l e c t r i c a l d o u b l e layers. T h e s t a b i l i t y of a c o l l o i d a l d i s p e r s i o n is p r e d i c t e d b y the D e r y a g u i n - L a n d a u - V e r w e y O v e r b e e k ( D L V O ) t h e o r y (6, 7, 21). D i s p e r s i b i l i t y has b e e n defined (12)

as the ease w i t h w h i c h a d r y

p o w d e r m a y b e d i s p e r s e d i n a l i q u i d a n d this t e r m c a n be u s e d to express the effectiveness

of the first t w o stages.

A l t h o u g h i n theory the three

stages m a y b e c o n s i d e r e d q u i t e separately, i n t e r p r e t a t i o n of e x p e r i m e n t a l observations i n terms of these stages m a y b e difficult because t h e y u s u a l l y o v e r l a p i n p r a c t i c e . A great d e a l of a t t e n t i o n has b e e n p a i d to the factors i n v o l v e d i n the s t a b i l i t y of c o l l o i d a l dispersions i n r e l a t i o n to c u r r e n t theories. T h e r e l a t i o n s h i p b e t w e e n d i s p e r s i b i l i t y a n d the v a r i o u s p a r a m e ­ ters o b t a i n i n g i n a n y p a r t i c u l a r system has r e c e i v e d little attention. T h e w e t t i n g characteristics of aqueous surfactant solutions o n o x i d e etc. sur­ faces is of c o n s i d e r a b l e interest to m i n e r a l processing, a n d o n

carbon

b l a c k s to detergency, b u t s u r p r i s i n g l y f e w attempts h a v e b e e n m a d e to relate the efficiency of the processes to the i n t e r f a c i a l tensions p r e v a i l i n g a n d to the contact angles.

U n f o r t u n a t e l y the measurement of

contact

angle for a l i q u i d w i t h a p o w d e r is beset w i t h difficulties. T h e a d s o r p t i o n of the surface active agent at the s o l i d / l i q u i d i n t e r ­ face is, p r e s u m a b l y , a n i m p o r t a n t p r e r e q u i s i t e to the process associated w i t h d i s p e r s i b i l i t y . Besides the l o w e r i n g of the i n t e r f a c i a l tension, another factor is i n v o l v e d w i t h i o n i c agents n a m e l y the electric p o t e n t i a l associ­ a t e d w i t h a d s o r p t i o n of ions. mushi

(19)

B o t h factors w e r e c o n s i d e r e d b y T a m a -

to be relevant to the d i s p e r s i o n of p o w d e r s

surfactant solutions.

Some

authors

(15, 20, 22, 23)

in

aqueous

h a v e r e l a t e d the

effects d i r e c t l y to the z e t a p o t e n t i a l , w h i l e others (8, 11, 18) discuss t h e i r observations i n terms of the i n c r e a s i n g degree of h y d r o p h i l i c character of the c a r b o n b l a c k surface as a result of a d s o r p t i o n . F u n d a m e n t a l ener­ getic considerations s h o w (12)

that the values of the contact angle a n d

the surface tension of the w e t t i n g l i q u i d are i m p o r t a n t parameters c o n ­ t r o l l i n g the d i s p e r s i o n process.

T h e effects of c o a g u l a t i o n , c o n t r o l l e d b y

Weber and Matijevi; Adsorption From Aqueous Solution Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

11.

137

Graphon

GREENWOOD E T A L .

the e l e c t r i c a l properties of the system, m a y be s u p e r i m p o s e d

on

the

d i s p e r s i n g process a n d this m a y l e a d to a n i n c o r r e c t i n t e r p r e t a t i o n of the e x p e r i m e n t a l results. This

paper

describes

(graphitized Spheron 6) fate ( S D S )

a

study

i n aqueous

of

the

d i s p e r s i b i l i t y of

Graphon

solutions of s o d i u m d o d e c y l

an dodecyl trimethylammonium bromide

sul­

( D T A B ) , a n d its

r e l a t i o n to the a d s o r p t i o n b e h a v i o r of the surfactants at the s o l i d / l i q u i d interface, w i t h a v i e w to d e t e r m i n e the c o n t r o l l i n g process i n the d i s ­ p e r s i b i l i t y of these systems.

Downloaded by CORNELL UNIV on October 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch011

Experimental M a t e r i a l s . G r a p h o n ( t h e g r a p h i t i z e d f o r m of the m e d i u m - p r o c e s s ­ i n g c h a n n e l b l a c k , S p h e r o n 6 ) was s u p p l i e d b y the C a b o t C o r p o r a t i o n . T h e surface area of G r a p h o n (4) of 78.9 m e t e r / g r a m was d e t e r m i n e d b y the B . E . T . m e t h o d u s i n g n i t r o g e n at - 1 9 6 ° C . a n d o- = 16.2 A . . P u r e samples of D T A B a n d S D S w e r e s u p p l i e d b y G l o v e r s C h e m i c a l s L t d . a n d C y c l o C h e m i c a l s respectively. A n a l y s i s of the surfactants gave t h e f o l l o w i n g results: S D S , C 4 9 . 7 6 % (calc. 5 0 . 0 0 % ), H 8 . 7 3 % (calc. 8 . 6 8 % ), residue 25.12% (calc. 2 4 . 6 6 % ) a n d > 9 9 % C homologue; D T A B , N 4 . 4 0 % ( c a l c . 4 . 5 4 % ) , B r 2 5 . 4 4 % (calc. 2 5 . 9 2 % ) residue 7 0 . 1 6 % ( c a l c . 6 9 . 5 4 % ) a n d > 9 6 % C i h o m o l o g u e . V a l u e s of the c r i t i c a l m i c e l l e c o n ­ c e n t r a t i o n (c.m.c.) w e r e d e t e r m i n e d for the t w o surfactants a n d the results for S D S , c.m.c. = 8.0 m M . ( d r o p v o l u m e m e t h o d for surface t e n s i o n ; no m i n i m u m o b s e r v e d ) , a n d D T A B , c.m.c. = 16.0 m M . ( c o n ­ d u c t a n c e ) , w e r e i n g o o d agreement w i t h l i t e r a t u r e values (17, 24), i n d i ­ c a t i n g a satisfactory l e v e l of p u r i t y . B . D . H . L t d . c e t y l p y r i d i n i u m b r o m i d e (standard cationic agent), and A . R . sodium chloride and potassium b r o m i d e w e r e used. 2

2

12

2

Procedure. F o r the a d s o r p t i o n measurements samples of a b o u t 0.3 g r a m G r a p h o n w e r e a c c u r a t e l y w e i g h e d into a d s o r p t i o n tubes, about 10 m l . of surfactant s o l u t i o n a d d e d , the tubes sealed a n d r o t a t e d e n d o v e r - e n d i n a w a t e r thermostat at 25 ± 0.1° for at least t w e l v e h o u r s ; it h a d b e e n established that a m u c h shorter t i m e w a s r e q u i r e d for r e a c h i n g a d s o r p t i o n e q u i l i b r i u m . U s u a l l y it w a s necessary to separate the s o l i d f r o m the s o l u t i o n b y filtering t h r o u g h a n O x o i d m e m b r a n e filter b u t w h e r e possible c e n t r i f u g i n g at 3500 r . p . m . w a s used. T h e clear super­ natant l i q u i d w a s a n a l y z e d for surfactant b y t i t r a t i o n ( 2 ) against c e t y l p y r i d i n i u m b r o m i d e for D T A B . B r o m o p h e n o l b l u e was u s e d as i n d i c a t o r . I n t h e cases w h e r e b o t h s e p a r a t i o n t e c h n i q u e s w e r e a v a i l a b l e i d e n t i c a l results w e r e o b t a i n e d . T h e effect o n the a d s o r p t i o n of b r e a k i n g u p the G r a p h o n b y i r r a d i a t i o n w i t h ultrasonics w a s assessed i n s i m i l a r e x p e r i ­ ments i n w h i c h the m i x t u r e s w e r e subjected to 40 k c . / s e c . r a d i a t i o n for t w o m i n u t e s u s i n g a 500 w a t t D a w e Instruments L t d . S o n i c l e a n G e n e r a t o r . F o r the assessment of d i s p e r s i b i l i t y , samples of a b o u t 0.1 g r a m of G r a p h o n w e r e a c c u r a t e l y w e i g h e d i n t o s t a n d a r d tubes a p p r o x i m a t e l y 1.5 c m . w i d e a n d 13 c m . l o n g fitted w i t h B 1 4 Q u i c k f i t joints. A k n o w n a m o u n t of s o l u t i o n ( — 1 0 m l . ) w a s a d d e d a n d the tubes w e r e r o t a t e d e n d - o v e r - e n d i n the thermostat at 25° at a p p r o x i m a t e l y 20 r . p . m . for

Weber and Matijevi; Adsorption From Aqueous Solution Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

Downloaded by CORNELL UNIV on October 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch011

138

ADSORPTION F R O M

AQUEOUS SOLUTION

v a r i o u s times, after w h i c h t h e y w e r e a l l o w e d to s t a n d for 18 h o u r s so that the larger G r a p h o n particles w o u l d settle. T h e o p t i c a l d e n s i t y of the r e m a i n i n g d i s p e r s i o n was m e a s u r e d at 400 m/x i n a 2 m m . c e l l u s i n g a U n i c a m S P 600 spectrophotometer, i n a constant t e m p e r a t u r e r o o m m a i n ­ t a i n e d at 25 ± 1 ° . O p t i c a l densities w e r e c o r r e c t e d to a c o n c e n t r a t i o n of 1 m g . G r a p h o n / m l . s o l u t i o n . T h e w e t t i n g characteristics of the systems w e r e assessed b y m e a s u r ­ i n g the contact angles (0) of the solutions o n the p o w d e r u s i n g the B i k e r m a n m e t h o d ( 3 ) . T o o b t a i n a non-porous flat surface o n w h i c h to p l a c e drops of l i q u i d for measurement, a t h i n l a y e r of G r a p h o n w a s pressed o n a flat paraffin w a x surface. D r o p s of different v o l u m e s (0.001 to 0.008 cc.) w e r e p l a c e d o n the G r a p h o n surface u s i n g a n A g l a syringe, a n d 6 c a l c u l a t e d f r o m measurements, u s i n g a t r a v e l l i n g m i c r o s c o p e , of the diameters of the areas of contact of the drops ( e x t r a p o l a t e d to zero v o l u m e ) , a s s u m i n g e a c h d r o p to have the same shape as a segment of a sphere. I n cases w h e r e this c o n d i t i o n w a s not f u l f i l l e d — i . e . , at l o w 0— anomalous results w e r e o b t a i n e d . C o n t a c t angles for w a t e r w e r e also m e a s u r e d for G r a p h o n pressed o n a v i n y l p l a s t i c t i l e a n d also o n a sheet of P o l y t h e n e , a n d w i t h i n e x p e r i m e n t a l error ( ± 2 % ) the results w e r e the same as those for G r a p h o n o n the w a x surface. C o n t a c t angles of v a r i o u s D T A B solutions o n the w a x surface w e r e f o u n d to b e about 3 0 ° l o w e r t h a n the c o r r e s p o n d i n g values o b t a i n e d for G r a p h o n pressed o n the w a x surface. Results

and

Discussion

T h e a d s o r p t i o n results for S D S o n G r a p h o n f r o m aqueous a n d 0 . 1 M s o d i u m c h l o r i d e solutions are s h o w n i n F i g u r e 1. I n b o t h cases saturation a d s o r p t i o n is r e a c h e d at the c . m . c , the effect of a d d e d salt b e i n g

to

decrease the c.m.c. a n d to increase the m a x i m u m a d s o r p t i o n l e v e l s u c h that the average area p e r a d s o r b e d D S " i o n decreases f r o m 4 2 A . to 3 3 A . . 2

2

F o r aqueous solutions a m a r k e d p o i n t of i n f l e c t i o n is o b s e r v e d at a b o u t h a l f the c . m . c , w h i c h m a y i n d i c a t e a change i n o r i e n t a t i o n , f r o m p a r a l l e l to p e r p e n d i c u l a r , of the a d s o r b e d i o n . A t the p o i n t of inflection the area p e r a d s o r b e d i o n is a p p r o x i m a t e l y 7 0 A . w h i c h w o u l d satisfy the p a r a l l e l 2

orientation model.

S i m i l a r experiments (4)

o n heat-treated samples of

the o r i g i n a l c a r b o n b l a c k S p h e r o n 6 i n d i c a t e that the p o i n t of inflection is associated w i t h the g r a p h i t i z e d , h o m o g e n e o u s surface c o n t a i n i n g v i r ­ t u a l l y no h y d r o p h i l i c sites. T h e p o i n t of i n f l e c t i o n is not a p p a r e n t i n the i s o t h e r m for 0 . 1 M s o d i u m c h l o r i d e p o s s i b l y because of the steep rise i n a d s o r p t i o n at l o w c o n c e n t r a t i o n .

T h e effect of s u b j e c t i n g the G r a p h o n

to u l t r a s o n i c r a d i a t i o n is to increase s l i g h t l y the a d s o r p t i o n at c o n c e n t r a ­ tions a b o v e the p o i n t of inflection. W h e t h e r this increase m a y b e corre­ l a t e d w i t h a change

i n the w e t t i n g characteristics of

the system

is

uncertain. F i g u r e 2 shows the a d s o r p t i o n d a t a for D T A B , w h i c h h a v e some similarities to those of S D S i n that s a t u r a t i o n is r e a c h e d at the c.m.c. a n d

Weber and Matijevi; Adsorption From Aqueous Solution Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

Downloaded by CORNELL UNIV on October 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch011

.

GREENWOOD E T A L .

139

Graphon

Equilibrium concentration (mM)

Figure 1. Adsorption of SDS on Graphon at 25° from aqueous solution after end-over-end action O and after ultrasonic irradiation X , and from solutions in 0.1 M sodium chloride • (end-over-end) T

i

I

i

i

i

Equilibrium concentration

i

I

i

i

r

(mM)

Figure 2. Adsorption of DTAB on Graphon at 25° from aqueous solution after end-over-end action O and after ultrasonic irradiation X , and from solutions in 0.1 M potassium bromide • (end-over-end)

Weber and Matijevi; Adsorption From Aqueous Solution Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

140

ADSORPTION F R O M

AQUEOUS SOLUTION

t h e a d s o r p t i o n increases o n a d d i t i o n of electrolyte. H o w e v e r , the increase is not as large for D T A B , the average area per D T A

+

ion decreasing

f r o m 4 2 A . to 3 8 A . . T h i s b e h a v i o r is p a r a l l e l e d b y the smaller a p p a r e n t 2

2

increase i n m i c e l l a r w e i g h t o n a d d i t i o n of p o t a s s i u m b r o m i d e to D T A B ( 5 ) c o m p a r e d w i t h that for s o d i u m c h l o r i d e o n S D S ( 1 0 ) , a n d m a y w e l l reflect the screening of the n i t r o g e n b y m e t h y l groups i n D T A B .

Subjecting

the G r a p h o n to u l t r a s o n i c r a d i a t i o n has n o effect ( w i t h i n e x p e r i m e n t a l e r r o r ) o n the a d s o r p t i o n . T h e r e are differences i n i s o t h e r m shape, a n d f o r D T A B the b e h a v i o r is not a m e n a b l e to a s i m p l e e x p l a n a t i o n . O f p a r t i c u l a r interest are plots Downloaded by CORNELL UNIV on October 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch011

of the a m o u n t a d s o r b e d against the m e a n i o n i c a c t i v i t y of the surface a c t i v e agent ( i n c l u d i n g the c o u n t e r i o n of the a d d e d e l e c t r o l y t e ) .

I n the

case of D T A B a l l the d a t a , i n c l u d i n g others at v a r i o u s salt concentrations u p to 0 . 5 M , l i e o n one l i n e w h i c h , after a n i n i t i a l steep rise, is l i n e a r to the c.m.c. T h i s indicates that for other t h a n the i n i t i a l strong a d s o r p t i o n at l o w concentrations ( p o s s i b l y because of specific interactions w i t h the surface) the a d s o r p t i o n f o l l o w s the l a w of mass a c t i o n . F o r S D S a s i m i l a r result is o b t a i n e d except that p o s i t i v e deviations f r o m the straight l i n e occur below a

±

— 4 X 1 0 " M for the cases (salt c o n c e n t r a t i o n < 3

0.1M)

w h e n there is a p o i n t of i n f l e c t i o n i n the i s o t h e r m . T h e s e deviations m a y reflect specific interactions of the D S " w i t h the surface w h e n the ions are adsorbed i n parallel orientation. D u r i n g the a d s o r p t i o n experiments

greater difficulty w a s

experi­

e n c e d i n s e p a r a t i n g the G r a p h o n d i s p e r s e d i n surfactant solutions at concentrations a b o v e the c . m . c , a n d this difficulty increases i n m a g n i t u d e w i t h the l e n g t h of the p e r i o d subjected to e n d - o v e r - e n d a c t i o n . the s e p a r a t i o n is c o m p l e t e , observed

Unless

a m a x i m u m i n the a d s o r p t i o n i s o t h e r m is

since the t o t a l a m o u n t of surfactant a n a l y z e d is larger t h a n

that c o r r e s p o n d i n g to the t r u e a d s o r p t i o n . W e f o u n d the a m o u n t of s o l i d remaining suspended

that w o u l d l e a d to a n a d s o r p t i o n m a x i m u m , to

be deceivingly small.

A n i l l u s t r a t i o n of the r e l a t i o n b e t w e e n the e q u i ­

l i b r i u m c o n c e n t r a t i o n of D T A B a n d the a m o u n t of s o l i d m a t e r i a l r e m a i n ­ ing

suspended

after

s t a n d i n g for

some days

a c t i o n for 30 hours, is g i v e n i n F i g u r e 3.

following

end-over-end

T h e i n i t i a l change, w h i c h is

f a i r l y a b r u p t , occurs at a c o n c e n t r a t i o n b e l o w the c . m . c , a n d c o m p a r i s o n w i t h the a d s o r p t i o n i s o t h e r m i n F i g u r e 2 shows there to be n o a p p a r e n t c o r r e l a t i o n b e t w e e n the effect a n d the n a t u r e of the a d s o r b e d layer. S u c h is the case for a l l the systems discussed i n this p a p e r .

F u r t h e r m o r e , the

effect bears no r e l a t i o n to the s t a b i l i t y to c o a g u l a t i o n of the Measurements (13)

systems.

of the rate of c o a g u l a t i o n of dispersions p r e p a r e d

u s i n g u l t r a s o n i c i r r a d i a t i o n s h o w that the G r a p h o n , once d i s p e r s e d , is i n d e f i n i t e l y stable i n aqueous surfactant solutions at a l l concentrations. It is the same for solutions c o n t a i n i n g salt a l t h o u g h i n these cases at l o w

Weber and Matijevi; Adsorption From Aqueous Solution Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

Downloaded by CORNELL UNIV on October 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch011

11.

141

Graphon

GREENWOOD E T A L .

Figure 3. The dispersibility of Graphon in aqueous solutions of DTAB at concentrations from left to right, in mM: 2.0, 5.1, 9.1,12.3, 15.0, 19.3, 22.6, 26.0, 30.2, 33.7 surfactant concentrations

the dispersions are r e l a t i v e l y unstable.

Also,

measurements of e l e c t r o p h o r e t i c m o b i l i t y i n d i c a t e that for a l l the systems the zeta p o t e n t i a l is constant over the range of c o n c e n t r a t i o n at w h i c h there is a m a r k e d change i n d i s p e r s i b i l i t y . It seems clear that the d i s ­ p e r s i b i l i t y of the G r a p h o n is not c o n t r o l l e d b y the e l e c t r o c h e m i c a l p r o p ­ erties of the system. T h e d i s p e r s i b i l i t y of G r a p h o n i n S D S solutions, b o t h w i t h a n d w i t h ­ out s o d i u m c h l o r i d e , is i l l u s t r a t e d i n F i g u r e 4 i n terms of the o p t i c a l d e n s i t y ( o n a s t a n d a r d w e i g h t basis) of the dispersions w h i c h r e m a i n after v a r i o u s periods of e n d - o v e r - e n d a c t i o n . S i m i l a r plots w e r e o b t a i n e d for D T A B .

F o r a l l the plots e x t r a p o l a t i o n to zero o p t i c a l density of the

a p p r o x i m a t e l y l i n e a r r e g i o n of r a p i d l y i n c r e a s i n g o p t i c a l density leads to a f a i r l y discrete v a l u e of the surface coverage of a d s o r b e d ions (46 i t 1A.

2

D S " a n d 52 ±

p e r s i b i l i t y occurs.

1 A . for D T A ) at w h i c h the a b r u p t change i n d i s ­ 2

+

T h e s e d a t a i n d i c a t e that the d i s p e r s i b i l i t y of G r a p h o n

is r e l a t e d to the h y d r o p h i l i c character of the surface associated w i t h the a d s o r b e d surfactant ions. Spontaneous w e t t i n g of the external surface of a s o l i d is associated w i t h zero contact angle, otherwise some w o r k is necessary for

complete

w e t t i n g to be a c h i e v e d . I n the case of a p o w d e r w e m u s t also consider the p e n e t r a t i o n of l i q u i d into the s m a l l channels i n s i d e a n d b e t w e e n

the

aggregates of the d r y p o w d e r , a n d this is t h e o r e t i c a l l y spontaneous

only

when 6 <

may

90°

(assuming a hypothetical cylindrical pore).

It

therefore b e a s s u m e d that for the p o w d e r to b e d i s p e r s e d i n the l i q u i d as fine particles it is necessary for 6 < would we

9 0 ° , a n d that o n l y w h e n 0 =

expect the w h o l e w e t t i n g process to be

0

spontaneous—i.e.,

Weber and Matijevi; Adsorption From Aqueous Solution Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

Downloaded by CORNELL UNIV on October 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch011

142

ADSORPTION F R O M

Concentration

SDS

AQUEOUS SOLUTION

(mM)

Figure 4. The dispersibility of Graphon in aqueous solutions of SDS shown as values of optical density put on a standard weight basis: (a) without sodium chloride, (b) with 0.02M sodium chloride, (c) with 0.1M sodium chloride. The numbers indicate the number of hours subjected to end-over-end action. Arrows indicate the c.m.c. r e q u i r e n o e x t e r n a l w o r k . T h a t this is the case w i t h the present system is b o r n e out b y the measurements of 6 for the v a r i o u s solutions o n G r a p h o n ( F i g u r e 5 ) . I n a l l cases i t is o b s e r v e d that t h e G r a p h o n cannot b e d i s p e r s e d e a s i l y unless 0 < 9 0 ° . It seems

reasonable to c o n c l u d e ,

therefore, that d i s p e r s i b i l i t y is

r e l a t e d to the w e t t i n g of the p o w d e r b y t h e l i q u i d r a t h e r t h a n to t h e e l e c t r o c h e m i c a l properties of the system.

Weber and Matijevi; Adsorption From Aqueous Solution Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

Downloaded by CORNELL UNIV on October 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch011

11.

GREENWOOD E T A L .

Graphotl

4

143

6 8 10 Concentration (mM)

Figure 5. Contact angles on Graphon for aqueous solutions of DTAB • and SDS X , for DTAB in 0.1M potassium bromide O , and for SDS in 0.1M sodium chloride O Acknowledgments T h e authors are g r a t e f u l to C . D . M o o r e of G l o v e r s C h e m i c a l s L t d . for p r e p a r i n g the s a m p l e of D T A B , to A c h e s o n I n d u s t r i e s ( E u r o p e ) L t d . for a grant to D . G . W . a n d to the R e s e a r c h A s s o c i a t i o n of B r i t i s h P a i n t , C o l o u r a n d V a r n i s h M a n u f a c t u r e r s f o r a grant to N . H . P . Literature (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Cited

Adamson, A. W . , "Physical Chemistry of Surfaces," p. 475, 2nd ed., John W i l e y and Sons, N e w York, 1967. Barr, T., Oliver, J . , Stubbings, W . V . , J. Soc. Chem. Ind. 67, 45 (1948). Bikerman, J . J . , Ind. Eng. Chem. 13, 443 (1941). D a y , R. E., Greenwood, F . G., Parfitt, G . D . , 4th Int. Cong. Surface Active Substances V o l . 2, 1005 (1964). Debye, P., Ann. N.Y. Acad. Sci. 51, 575 (1949). Deryaguin, B. V., Trans. Faraday Soc. 36, 203 (1940). Deryaguin, B . V., L a n d a u , L. D., Acta Physicochim. U.S.S.R. 14, 633 (1941). Doscher, T. M., J. Coll. Sci. 5, 100 (1950). Gerstner, W., J. Oil and Colour Chem. Assoc. 49, 954 (1966). Huisman, H. F., Proc. Kon. Ned. Akad. van Wet. 67, 367 (1964). Meguro, K . ,J.Chem. Soc. Japan (Ind. Chem. Sect.) 58, 905 (1955). Parfitt, G . D., J. Oil and Colour Chem. Assoc. 50, 822 (1967). Parfitt, G . D . , Picton, N . H., Trans. Faraday Soc. 64, 1955 (1968). Patton, T . C., "Paint F l o w and Pigment Dispersion," Chapt. 8, Interscience N e w York 1964 Ray, L. N., Hutchinson, A." W . , J. Phys. Coll. Chem. 55, 1334 (1951). Rehbinder, P., Colloid J. U.S.S.R. 20, 493 (1958).

Weber and Matijevi; Adsorption From Aqueous Solution Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

144 (17) (18) (19) (20) (21) (22) (23) (24)

ADSORPTION F R O M

AQUEOUS

SOLUTION

Scott, A . B., Tartar, H. V., J. Am. Chem. Soc. 65, 692 (1943). Tamaki, K . , J. Japan Oil Chem. Soc. 9, 426 (1960). Tamamushi, B., " C o l l o i d a l Surfactants," p. 244, Shinoda et al., eds., Academic Press, L o n d o n , 1963. U r b a i n , W . M., Jensen, L. B., J. Phys. Chem. 40, 821 (1936). Verwey, E . J . W . , Overbeek, J . T h . G., "Theory of the Stability of L y o phobic Colloids," Elsevier, Amsterdam, 1948. V o i d , R. D . , Greiner, L., J. Phys. Coll. Chem. 53, 67 (1949). V o l d , R. D . , Konecny, C . C., J. Phys. Coll. Chem. 53, 1262 (1949). W i l l i a m s , R. J., Phillips, J. N., Mysels, K . J., Trans. Faraday Soc. 51, 728 October 26,

1967.

Downloaded by CORNELL UNIV on October 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0079.ch011

RECEIVED

Weber and Matijevi; Adsorption From Aqueous Solution Advances in Chemistry; American Chemical Society: Washington, DC, 1968.