Laser Probes for Combustion Chemistry - American Chemical Society


Laser Probes for Combustion Chemistry - American Chemical Societyhttps://pubs.acs.org/doi/pdf/10.1021/bk-1980-0134.ch036...

0 downloads 274 Views 465KB Size

36

Laser Probes for Combustion Chemistry Downloaded from pubs.acs.org by NATL UNIV OF SINGAPORE on 05/05/18. For personal use only.

Multiangular Absorption Measurements in a Methane Diffusion Jet ROBERT J. SANTORO and H . G. SEMERJIAN Thermal Processes Division, National Bureau of Standards, Washington, D.C. 20234 P. J. E M M E R M A N , R. GOULARD, and R. SHABAHANG School of Engineering and Applied Science, The George Washington University, Washington, D.C. 20052 The mathematical r e c o n s t r u c t i o n of a property field, F ( x , y ) , from its p r o j e c t i o n in the θ direction is the b a s i s o f "Computer­ i z e d Tomography" ( 1 , 2 ) . An identical technique can be used t o r e c o n s t r u c t a field of linear a b s o r p t i o n c o e f f i c i e n t functions i n a combusting flow field from m u l t i a n g u l a r path i n t e g r a t e d absorp­ tion measurements. The linear a b s o r p t i o n c o e f f i c i e n t is the f a m i l i a r N Q product, where N is the c o n c e n t r a t i o n of species i and Q is the a b s o r p t i o n cross s e c t i o n of species i at the frequency ν. The Bouguer-Lambert-Beer law s t a t e s that i

i

i

i

where we assume a s i n g l e monochromatic light source of frequency ν and that Ν is the only c o n s t i t u e n t in the measured domain w i t h absorption at this frequency. Taking the n a t u r a l l o g a r i t h m of both s i d e s y i e l d s i

If two-dimensional functions in the coordinate system defined i n Figure 1 are considered and letting

where the coordinate systems are r e l a t e d by

it can be shown that the F o u r i e r transforms of the f u n c t i o n taken in the two coordinate systems are r e l a t e d by

0-8412-0570-l/80/47-134-427$05.00/0 © 1980 American Chemical Society

428

LASER

PROBES

FOR

COMBUSTION

CHEMISTRY

where r e p r e s e n t s a Fourier transform operation. Thus t h e two F o u r i e r t r a n s f o r m s a r e t h e same i f t h e t r a n s f o r m a x e s ( r , s ) a r e a r o t a t i o n o f (χ,5θ i n t h e f r e q u e n c y domain b y t h e a n g l e θ Λ

Laser Probes for Combustion Chemistry Downloaded from pubs.acs.org by NATL UNIV OF SINGAPORE on 05/05/18. For personal use only.

?(ω,θ) « FCa>,e)

(6)

where ω i s 2-n t i m e s t h e s p a t i a l f r e q u e n c y . This i s the central s l i c e theorem o f F o u r i e r t r a n s f o r m s , which s t a t e s t h a t t h e t r a n s ­ form o f a p r o j e c t i o n taken a t angle θ i s equal t o a l i n e through t h e c e n t e r o f t h e t w o - d i m e n s i o n a l t r a n s f o r m domain o f t h e f u n c t i o n F w h i c h makes a n a n g l e θ w i t h t h e χ a x i s . T h e r e f o r e knowledge o f a l l p r o j e c t i o n s w o u l d d e f i n e t h e t r a n s f o r m o f t h e f u n c t i o n and b y t a k i n g t h e c o r r e s p o n d i n g i n v e r s e t r a n s f o r m , t h e f u n c t i o n can be e v a l u a t e d a t any p o i n t i n i t s domain. A p p l y i n g a c o n v o l u t i o n t h e o r e m (_3,^4) y i e l d s t h e f o l l o w i n g e q u a t i o n w \ Ιο Γ F ( x , y ) = ^-2 /

r°° C»/

π

de

a\

P(jw,6)e

ίω(χ c o s θ + y s i n θ) ι ι , |a>|du> J

(7)

The l i n e a r a b s o r p t i o n c o e f f i c i e n t f u n c t i o n s c a n t h u s be r e c o n ­ structed using only p r o j e c t i o n data. Experiment A methane-argon asymmetrical d i f f u s i o n j e t has been analyzed f o r t h e methane c o n c e n t r a t i o n mapping i n a s t e a d y f l o w c o n d i t i o n . The j e t a p p a r a t u s c o n s i s t s o f a 12.7mm i . d . b r a s s t u b e l o c a t e d 19mm f r o m t h e c e n t e r l i n e o f a 15.25cm c i r c u l a r b r a s s p l a t e . The j e t i s s u p p l i e d f r o m a 10cm d i a m e t e r c y l i n d r i c a l chamber c o n ­ t a i n i n g a g l a s s bead m i x i n g s e c t i o n . A combination o f f l o w s t r a i g h t e n e r s and s c r e e n s a r e c o n t a i n e d i n t h e j e t s e c t i o n t o provide a uniform e x i t flow p r o f i l e . The j e t / p l a t e c o m b i n a t i o n i s mounted o n a m i l l i n g b e d w h i c h a l l o w s f o r a c c u r a t e t h r e e dimensional p o s i t i o n i n g of the unit. A b s o r p t i o n b y methane o f t h e 3.39μ l i n e o f a HeNe l a s e r i s u s e d t o d e t e r m i n e t h e methane c o n c e n t r a t i o n a c r o s s t h e j e t . The o p t i c a l a r r a n g e m e n t u s e d i s shown i n F i g u r e 2. The HeNe l a s e r o u t p u t (^lrnw) i s a t t e n u a t e d w i t h a 1.0 n e u t r a l d e n s i t y f i l t e r s o as n o t t o e x c e e d t h e maximum i r r a d i a n c e s p e c i f i c a t i o n o f t h e d e t e c t o r . The beam i s i n t e r r u p t e d u s i n g a m e c h a n i c a l l i g h t c h o p p e r o p e r a t i n g a t 1015 H z . T r a n s m i t t e d r a d i a t i o n i s d e t e c t e d by a n u n c o o l e d PbSe d e t e c t o r . A p r e a m p l i f i e r w i t h a g a i n o f t e n i s u s e d t o impedance m a t c h t h e r e s u l t i n g s i g n a l t o an o s c i l l o ­ s c o p e and l o c k - i n a n a l y z e r . The o u t p u t f r o m t h e l o c k - i n a n a l y z e r i s d i s p l a y e d on a d i g i t a l v o l t m e t e r . I n t h e p r e s e n t e x p e r i m e n t s a 1 0 % CH^ - 90% A r m i x t u r e was u s e d . A l l e x p e r i m e n t s w e r e done u n d e r c o n d i t i o n s o f atmos­ p h e r i c p r e s s u r e and room t e m p e r a t u r e . The f l o w r a t e was m e a s u r e d t o b e 0.57 l i t e r s / s . A s e r i e s o f a b s o r p t i o n measurements w e r e t a k e n a c r o s s t h e j e t a t i n t e r v a l s o f .64 mm (.025 i n c h e s ) a t a h e i g h t o f 12.7 mm above t h e j e t . The j e t was t h e n r o t a t e d 15° and t h e e x p e r i m e n t was r e p e a t e d w i t h t h e r e s u l t t h a t d a t a f o r

Laser Probes for Combustion Chemistry Downloaded from pubs.acs.org by NATL UNIV OF SINGAPORE on 05/05/18. For personal use only.

36.

Methane

SANTORO ET AL.

Diffusion

Jet

429

1.0 N . D . FILTER

HE-NE LASER

λ = 3.39μ

PB-SE OPTICAL CHOPPER

DETECTOR JET & MILLING BED

PRE-AMP

LOCK-IN AMP DVM

OSCILLOSCOPE

Figure 2.

Schematic of apparatus for methane jet experiment

430

LASER PROBES FOR COMBUSTION CHEMISTRY

t w e l v e s e p a r a t e a n g l e s was o b t a i n e d t o map o u t t h e j e t r e g i o n . S p a t i a l r e s o l u t i o n was l i m i t e d b y t h e 2 mm l a s e r beam diameter. A v e r a g e a b s o r p t i o n measurements w e r e o b t a i n e d b y u s i n g a 4.0 s t i m e c o n s t a n t o n t h e l o c k - i n d e t e c t o r . The a b s o r p t i o n d a t a o b t a i n e d was i n p u t t o a m i n i c o m p u t e r f o r a n a l y s i s , u s i n g a d i s c r e t e f o r m o f e q u a t i o n 7.

Laser Probes for Combustion Chemistry Downloaded from pubs.acs.org by NATL UNIV OF SINGAPORE on 05/05/18. For personal use only.

Results An o b j e c t i v e o f t h i s s e r i e s o f e x p e r i m e n t s i s t o p r o v i d e a p r e l i m i n a r y assessment o f the tomographic r e c o n s t r u c t i o n approach for combustion d i a g n o s t i c s . I n order t o minimize experimental d i f f i c u l t i e s introduced by combustion, a simple flow c o n f i g u r a t i o n has been chosen f o r t h i s i n i t i a l study. I t i s mathem a t i c a l t r u i s m t h a t any b a n d l i m i t e d f u n c t i o n can be a c c u r a t e l y r e c o n s t r u c t e d f r o m i t s p r o j e c t i o n s i f b o t h t h e number a n d t h e s i g n a l t o n o i s e r a t i o o f these p r o j e c t i o n s approach i n f i n i t y . In any r e a l c o m b u s t i o n s i t u a t i o n , b o t h o f t h e s e c o n d i t i o n s w i l l b e severely limited. The p r e s e n t r e s u l t s p r o v i d e i n s i g h t s i n t o t h e measurement c a p a b i l i t i e s o f t h e t o m o g r a p h i c r e c o n s t r u c t i o n a p proach under such l i m i t a t i o n s . The r e c o n s t r u c t e d l i n e a r a b s o r p t i o n v a l u e s f o r a c r o s s s e c t i o n o f t h e j e t (12.7mm above t h e e x i t p l a n e ) f o r t h e c a s e o f t w e l v e a n g l e s i s shown i n F i g u r e 3. Q u a l i t a t i v e l y t h e r e c o n s t r u c t e d f i e l d shows t h e e x p e c t e d ^ j e t D r o f i l e . U s i n g an a b s o r p t i o n c o e f f i c i e n t o f 10 atm~ cm" e x t r a p o l a t e d f r o m t h e r e s u l t s o f McMahon e t . a l . ( 5 ) , t h e c e n t e r l i n e c o n c e n t r a t i o n o f methane i s f o u n d t o b e 9.6%. S i n c e t h e measurements were t a k e n c l o s e t o the j e t e x i t the p o t e n t i a l core o f the flow i s observed t o s u r v i v e t o t h e measurement p o i n t . Thus t h e methane c o n c e n t r a t i o n would be expected t o be the 10% i n i t i a l l y i n t r o d u c e d . T h e r e f o r e good agreement i s o b s e r v e d w i t h r e s p e c t t o c o n c e n t r a t i o n measurement. The p o s i t i o n o f t h e j e t c e n t e r l i n e was o b t a i n e d from t h e l o c a t i o n o f t h e peak v a l u e s o f t h e l i n e a r absorption coefficients. This approach y i e l d e d a p o s i t i o n o f 19±1.3 mm w h i c h compares q u i t e w e l l w i t h t h e known p o s i t i o n o f 19 mm. T h i s i s f u r t h e r c o n f i r m a t i o n o f t h e a c c u r a c y o f t h e reconstruction algorithm. The a n a l y s i s was r e p e a t e d u s i n g p r o j e c t i o n s f o r o n l y s i x a n g l e s a n d t h e r e s u l t s a r e shown i n F i g u r e 4. A s c a n b e s e e n t h e r e i s a marked i n c r e a s e i n t h e a b s o l u t e v a l u e s o f t h e l i n e a r a b s o r p t i o n c o e f f i c i e n t i n r e g i o n s away f r o m t h e j e t a s compared to t h e twelve angle case. S i n c e t h e r e i s no methane p r e s e n t i n these r e g i o n s , these values are a r e s u l t o f " r i n g i n g " generated by the a l g o r i t h m . These r e s u l t s a r e i n q u a l i t a t i v e agreement w i t h p r e v i o u s a n a l y t i c a l s t u d i e s u s i n g s i m u l a t e d absorption functions (6). Work i s i n p r o g r e s s t o o b t a i n r e s u l t s w i t h i m p r o v e d s p a t i a l r e s o l u t i o n a n d t o e x t e n d t h e r a n g e o f measurements t o much l o w e r concentrations. F u r t h e r w o r k w i l l a l s o c o n s i d e r more c o m p l i c a t e d f l o w geometries w i t h a l o n g e r range g o a l o f s t u d y i n g combustion

Laser Probes for Combustion Chemistry Downloaded from pubs.acs.org by NATL UNIV OF SINGAPORE on 05/05/18. For personal use only.

36.

SANTORO ET AL. Methane Diffusion Jet 431

Laser Probes for Combustion Chemistry Downloaded from pubs.acs.org by NATL UNIV OF SINGAPORE on 05/05/18. For personal use only.

432 LASER PROBES FOR COMBUSTION CHEMISTRY

Figure 4.

Reconstruction of methane jet cross section for six-angle case

36.

SANTORO E T A L .

Methane

Diffusion

Jet

experiments. I n these experiments the goal i s t o achieve "instantaneous t i m e c o n c e n t r a t i o n p r o f i l e s i n two a n d t h r e e d i m e n s i o n s w h i l e u s i n g measurement a p e r a t u r e t i m e s a s s h o r t a s 50 y s e c .

433

Laser Probes for Combustion Chemistry Downloaded from pubs.acs.org by NATL UNIV OF SINGAPORE on 05/05/18. For personal use only.

1 1

Literature Cited 1. Gordon, R., Herman, G.T., Johnson, S.A., Sci. Am. (1976), 233, 56. 2. Brooks, R.A., DiChiro, G., Phys. Med. Bio., (1976), 21, 689. 3. Ramachandran, R.N., Lakshmenarayanan, Proc. Natl. Acad. Sci. U.S., (1971), 68, 2236. 4. Shepp, L.A., Logan, B.F.. IEEE Trans. Nucl. Sci., (1974), 21, 21. 5. McMahon, J., Troup, G.J., Hubbert, G., Kyle, T.G., J. Quant. Spectrosc. Radiat. Transfer, (1972), 12, 797. 6. Goulard, R., Emmerman, P.J., 17th Aerospace Sciences Meeting, (1979), 79-0085. R E C E I V E D February

1, 1 9 8 0 .