METAL-ORGANIC COMPOUNDS


METAL-ORGANIC COMPOUNDSpubs.acs.org/doi/pdf/10.1021/ba-1959-0023.ch01077-80, 82, 83, 99, 106, 107, 148, 162). In the cas...

0 downloads 77 Views 2MB Size

Organoboron Compounds ROY M. ADAMS Callery Chemical Co., Callery, Pa., and Geneva College, Beaver Falls, Pa.

Downloaded by STANFORD UNIV GREEN LIBR on March 16, 2013 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch010

In this paper the definition of organoboron compounds is limited to those containing boron-carbon bonds. The nomenclature is that proposed by Wartik and Schaeffer and the Organic Subcommittee on Boron Nomenclature (116, 159). Preparations Trialkylboranes or Triarylboranes. The first report of the preparation of boron-carbon bonds was made by Frankland almost one hundred years ago. Triethylborane was prepared by the reaction of diethyl zinc with ethyl borate. 3(C H ) Zn + 2B(OC H ) --> 2(C H ) B + 3Zn(OC H ) 2

5

2

2

5 3

2

5

3

2

5 2

As a result, the alkylboranes are sometimes referred to as Frankland reagents by European writers (52). Many alkyl- and arylboranes have been prepared by similar methods using alkoxy- or haloboranes as the boron source, an alkyl or aryl halide as the carbon source, and an active metal as the condensing agent. B Y + 6M + 3RX

BR + 3MY + 3MX

3

3

Y = halide, oxide or alkoxide; X = halide; M = Li, Na, Mg, Zn, or Al; R is alkyl or aryl. In most cases the intermediate metal alkyl or alkyl metal halide was isolated. In the first preparations of arylboranes, diarylmercury compounds were used (16, 37, 69, 77-80, 82, 83, 99, 106, 107, 148, 162). In the case of hydrocarbons which react with active metals, the hydrocarbon has sometimes been used as the carbon source—e.g., naphthalene (88). Ethylene has also been used as the carbon source in forming an intermediate alkylaluminum halide (124). Al + AlCls + C H 2

C H A1C1 + (C H ) A1C1

4

2

5

2

2

5 2

The preparation of a boron-carbon bond directly from a boron compound and a hydrocarbon was first reported by Pace. Attempts to reproduce this preparation have been unsuccessful (118). Arnold has patented the reaction of acetylene with trichloroborane in the presence of mercurous chloride to form chlorovinylborane (2). Hg Cl BCI3 + C H > CI—CH=CH—BC1 The ease of elimination of acetylene, by these compounds, in the presence of bases limits their usefulness (12). 2

2

H

2

2

2

H

Cl—C=C—BC1 + 3 0 H - -» B(OH) + C H + 3C1~ 2

3

2

2

Hurd has reported the preparation of triethylborane from ethylene and diborane. The kinetics of this reaction was studied by Whatley and Pease (64, 161). B H + 6C H -» 2(C II ) B 87 2

6

2

4

2

f)

3

In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.

88

ADVANCES IN CHEMISTRY SERIES

O t h e r s h a v e s t u d i e d t h e r e a c t i o n of d i b o r a n e w i t h u n s a t u r a t e d o r g a n i c c o m p o u n d s , b u t t h e p r o d u c t s a r e u s u a l l y p o l y m e r i c (114, 147, 14&)S c h l e s i n g e r f o u n d t h a t t h e r e a c t i o n of d i b o r a n e w i t h m e t a l a l k y l s g e n e r a l l y g a v e m e t a l b o r o h y d r i d e s a n d a l k y l boranes (141)—e.g., ( C H ) A 1 + 2 B H -> A 1 ( B H ) + ( C H ) B 3

3

2

6

4

3

3

B r o k a w a n d Pease f o u n d t r i e t h y l b o r a n e a m o n g a l u m i n u m borohydride w i t h ethylene.

3

the products

of the reaction of

A 1 ( B H ) + 1 2 C H -> A 1 ( C H ) + 3 ( C H ) B

Downloaded by STANFORD UNIV GREEN LIBR on March 16, 2013 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch010

4

3

2

4

2

5

3

2

5

3

M o n o - or Dialkylboranes or M o n o - or Diarylboranes. I n general, the preceding p r e p a r a t i o n s c a n be m o d i f i e d t o g i v e chiefly m o n o - o r d i a l k y l b o r a n e s by p r o p e r r e a c t a n t stoichiometry (167). BY

+ 6 M + R X -> B R Y

3

+ M Y+ M X

2

W i b e r g a n d F i s c h e r h a v e also f o u n d t h a t m o n o - o r d i a l k y l b o r a n e s m a y be p r e p a r e d b y t h e r e d i s t r i b u t i o n o f t r i a l k y l b o r a n e s w i t h h a l o - o r a l k o x y b o r a n e s (45-48, 162). BRg + B X

3

+ Β (OR) ;

>ioo° c .

3BR(X)OR

k

H C — € H B B r 3

6

4

3

3

6

3

4

+ (H CC H ) BBr

2

3

6

4

2

T h e only reported preparation of a mixed t r i a l k y l b o r a n e was b y K r a u s f r o m d i b u t y l b o r y l s o d i u m a n d m e t h y l i o d i d e (6). (C H ) BNa + CH I - » (C H ) BCH 4

9

2

3

4

9

2

+ Nal

3

L e t s i n g e r w a s able t o p r e p a r e p h e n y l ( l - n a p h t h y l ) h y d r o x y b o r a n e l-naphthyldialkoxyborane with phenyllithium. C H L i + ( 1 — C i o H ) B ( O R ) -> L i C H ( l — C i H ) B ( O R ) 6

6

7

2

6

6

0

7

b y the reaction of a

2

IHOH LiOH + 2ROH +C H (1—Ci H )BOH 6

6

0

7

A t t e m p t s t o p r e p a r e m i x e d a l k y l a r y l b o r a n e s were u n s u c c e s s f u l (88). T h e dialkylhaloboranes c a n be prepared b y reaction of the t r i a l k y l b o r a n e w i t h a hydrogen halide. ( C H ) B + H C 1 -> ( C H ) B C 1 + C H 3

3

3

2

4

T h e a d d i t i o n of a l u m i n u m halide a n d increased temperatures result i n the r e m o v a l of a second m o l e c u l e o f t h e a l k a n e (11, 52, 143, 162). (CH ) BC1 + HC1 ^ 3

CH BC1

2

3

2

+ CH

4

L o n g has r e p o r t e d t h e p r e p a r a t i o n of d i p r o p y l i o d o b o r a n e f r o m t r i p r o p y l b o r a n e a n d iodine at 140°C. ( C H ) B + I -> ( C H ) B I + B H I 3

7

3

2

3

7

2

3

7

T h e iodine m a y be replaced b y chlorine o r bromine b y reaction w i t h the appropriate a n t i m o n y h a l i d e (95). 3 ( C s H ) B I + S b C l -> 3 ( C H ) B C 1 + S b l 7

2

3

3

7

2

3

In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.

ADAMS-ORGANOBORON COMPOUNDS

89

T h e a l k y l fluoroboranes were first p r e p a r e d b y B u r g f r o m t r i f l u o r o b o r a n e a n d t h e a n h y d r i d e of t h e c o r r e s p o n d i n g h y d r o x y b o r a n e (20). (CH BO) 3

3

+ 3 B F -> C H B F 3

3

+ (FBO)

2

3

3 ( C H ) , B O B ( C H ) , + 3 B F -> 6 ( C H ) B F + ( F B O ) 3

3

3

3

2

3

M c C u s k e r f o u n d t h a t B u r g ' s m e t h o d was g e n e r a l l y s a t i s f a c t o r y f o r p r e p a r i n g the a l k y l d i f l u o r o b o r a n e s a n d t h a t t h e y were stable t o d i s p r o p o r t i o n a t i o n . T h e s e c o n d a r y a n d t e r t i a r y c o m p o u n d s were s p o n t a n e o u s l y flammable. The trialkylboroxins and alu­ m i n u m c h l o r i d e gave e v i d e n c e of the f o r m a t i o n of a l k y l d i c h l o r o b o r a n e s (98).

Downloaded by STANFORD UNIV GREEN LIBR on March 16, 2013 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch010

A l k y l a l k o x y b o r a n e s . T h e m o n o a l k y l d i a l k o x y b o r a n e s m a y be p r e p a r e d b y the slow o x i d a t i o n o f a l k y l b o r a n e s (52) R B + 0 -> R B ( O R ) 3

2

2

o r b y t h e a l c o h o l y s i s of t h e m o n o a l k y l h a l o b o r a n e s o r t h e m o n o a l k y l d i b o r a n e s . CH BC1 3

CH B H 3

2

+ 2 H O C H -> C H B ( O C H )

2

2

5

+ 5HOC H

5

2

3

2

5

6

3

2

+ 2HC1

2

CH B(OC H ) 6

+ B(OC H ) + 5H

2

2

5

3

2

T h e m o n o a l k y l d i a l k o x y b o r a n e s are e v i d e n t l y i n t e r m e d i a t e s i n t h e r e a c t i o n s of t h e m e t a l a l k y l s w i t h excess t r i a l k o x y b o r a n e , b u t t h e y h a v e s e l d o m b e e n i s o l a t e d (llfi). W i t h m o i s t a i r the t r i a l k y l b o r a n e s are r e p o r t e d t o y i e l d d i a l k y l a l k o x y b o r a n e s (67). (C H ) B + 0 4

9

3

2

m

°

1 S t U r e

> (C H ) BOC H 4

9

2

4

9

D i - n - b u t o x y p h e n y l b o r a n e r e a c t e d w i t h p h o s p h o r u s p e n t a c h l o r i d e t o give p h e n y l dichloroborane. S i m i l a r r e a c t i o n s were o b t a i n e d w i t h b o t h m - a n d p- b i s - ( d i b u t o x y b o r y l ) benzenes. A t t e m p t s t o reduce t h e p h e n y l d i c h l o r o b o r a n e s w i t h l i t h i u m a l u m i n u m h y d r i d e d i d not give phenylborane. P h e n y l d i f l u o r o b o r a n e was p r e p a r e d b y the r e a c t i o n of d i m e t h o x y p h e n y l b o r a n e w i t h t r i f l u o r o b o r a n e (99). C H B(OC H ) 6

5

4

9

3C H B(OCH ) 6

6

3

+ P C 1 -> C H B C 1 + ( C H 0 ) P C 1 ?

2

5

2

+ 2BF

6

5

2

3C H BF

3

6

6

4

2

9

2

3

+ 2B(OCH ) 3

3

L e t s i n g e r has p r e p a r e d a n u m b e r of d i a r y l a m i n o e t h o x y b o r a n e s a n d f o u n d t h e m t o be u n u s u a l l y stable because of the i n t e r n a l d a t i v e b o n d Ar

I ArB

Ο

î

I

H N

C H

2

H

2

2

H e f o u n d these c o m p o u n d s c o n v e n i e n t f o r i s o l a t i n g d i a r y l h y d r o x y b o r a n e s , a n d t h e d i e t h a n o l a m i n e d e r i v a t i v e s f o r t h e i s o l a t i o n of t h e a r y l d i h y d r o x y b o r a n e s (90). H e also r e p o r t e d t h e i s o l a t i o n of the first r e p o r t e d h e t e r o c y c l i c c o m p o u n d w i t h o n l y c a r b o n a n d b o r o n i n the r i n g , b y the f o l l o w i n g r e a c t i o n (91 ) : CH

2

C H

2

(J^J) + ( C H 0 ) B 4

9

3

In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.

90

ADVANCES IN CHEMISTRY SERIES K u i v i l a has i n v e s t i g a t e d t h e ethers o f p h e n y l d i h y d r o x y b o r a n e w i t h s e v e r a l p o l y a l -

cohols, i n c l u d i n g s o r b i t o l , m a n n i t o l , p i n a c o l , c a t e c h o l , p e n t a e r y t h r i t o l , d i e t h y l D - t a r t r a t e , a n d c i s - i n d a n - l , 2 - d i o l . T h e s e were p r e c i p i t a t e d b y m e r e l y a d d i n g the p h e n y l d i h y d r o x y ­ b o r a n e t o a s a t u r a t e d s o l u t i o n of t h e p o l y o l (86). O—CR ArB(OH)

+ (R COH)

2

2

2

+

-> A r — Β

2

O—CR

2H 0 2

2

H e also f o u n d t h a t α - h y d r o x y i s o b u t y r i c a c i d ties u p p h e n y l d i h y d r o x y b o r a n e as a c o m ­ p l e x a n i o n (84).

Downloaded by STANFORD UNIV GREEN LIBR on March 16, 2013 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch010

OH

o C H B(OH) 6

6

3

2

I o-

CH CH

H 0

+

c=o

CGHB- - B

+ H(CH ) —CH(OH)COOH •

2

3

+

3

3

Recent w o r k b y Letsinger has demonstrated t h a t the d i a l k y l a l k o x y b o r a n e s m a y be p r e p a r e d f r o m G r i g n a r d reagents a n d a l k o x y b o r a n e s b y t h e use o f 1,2-ethandiol t o s e p ­ arate the d i a l k y l f r o m the m o n o a l k y l a t e d p r o d u c t . T h e r e s u l t i n g ethers differ w i d e l y i n v o l a t i l i t y (89). 2(C H ) BOCH 4

9

2

C H B(OCH ) 4

9

3

2

+ H O C H C H O H -» ( C H ) B O C H C H O B ( C H )

3

2

4

2

+ HOCH CH OH 2

9

2

2

- C H B(OCH -)

2

4

9

2

2

9

+

2

2CH OH 3

2CH OH

+

2

4

3

M e e r w e i n found i n a n u n u s u a l reaction t h a t trialkylboranes reacted w i t h aldehydes t o give d i a l k y l a l k o x y b o r a n e s

(102).

(0 Η ) Β + C H C H O -> ( C H ) B O C H C H 2

Δ

3

6

5

2

5

2

2

6

5

+

C H 2

4

B o r o n b o n d s t o m o s t elements o t h e r t h a n c a r b o n h y d r o l y z e to f o r m the h y d r o x y b o r a n e s (41, 43, 70, 134, 139, 142). R BY 2

+ H O H -> R B O H +

H Y

2

R = a l k y l or a r y l , Y = halogen, a l k o x i d e , h y d r i d e , amide, or oxide. T h e a l k y l h y d r o x y b o r a n e s lose w a t e r r e a d i l y (43). 2R BOH

H O H +

2

3RB(OH)

(RBO)

2

R BOBR 2

3

2

+ 3H 0 2

cyclic

T h e t r i a l k y l b o r o x i n s c a n also b e p r e p a r e d f r o m b o r i c o x i d e a n d t h e t r i a l k y l b o r a n e (58). B 0 2

3

+ (CH ) B ^± (CH ) B 0 3

3

3

3

3

3

Alkylboranes with F u n c t i o n a l Groups i n the Side C h a i n . L y l e has s t u d i e d t h e p r e p a r a t i o n o f t r i a l k y l boranes w i t h t e r m i n a l o r a l p h a d o u b l e b o n d s or e t h e r e a l g r o u p s i n t h e side c h a i n . H e f o u n d t h a t the s t a b i l i t y of t h e G r i g n a r d reagent w a s g e n e r a l l y l i m i t i n g i n these p r e p a r a t i o n s . P h y s i c a l p r o p e r t i e s a n d i n f r a r e d s p e c t r a g a v e evidence of i n t r a m o l e c u l a r a s s o c i a t i o n (97). H H C — C 2

Η,Ο^ \

/ CH3OC3H6

- C H

H C

C H

I

Ο—CH Β

H C 2

2

il

2

3



\

2

/

B-

\

C4H7

0 Η 4

7

0 ΗβΟΟΗ3 3

In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.

91

ADAMS-ORGANOBORON COMPOUNDS

R o t h s t e i n a n d S a v i l l e obtained b i s ( d i a l l y l b o r y l ) oxide a n d t r i - n - b u t y l b o r a n e r a t h e r t h a n the expected a l l y l d i - n - b u t y l b o r a n e f r o m the reaction of allylmagnesium bromide with di-n-butylbromoborane.

T h e e v i d e n t course o f t h e r e a c t i o n w a s

2 C H M g B r + 3 ( C H ) B B r -> 2 ( C H ) B + ( C H ) B B r + 2 M g B r 3

6

4

9

2

4

9

3

3

5

2

2 ( C H ) B B r + H O H -> 2 H B r + ( C H ) B O B ( C H 5 ) 3

5

2

3

5

2

3

2

2

B i s ( d i a l l y l b o r y l ) o x i d e w a s also o b t a i n e d f r o m t h e r e a c t i o n o f a l l y l m a g n e s i u m b r o ­ mide with trifluoroborane

(123).

R i t t e r has prepared several v i n y l - t y p e boranes b y the reaction of v i n y l s o d i u m o r propenyllithium with dimethylbromoborane. C H = C H N a + ( C H ) B B r -> ( C H ) B C H = C H

Downloaded by STANFORD UNIV GREEN LIBR on March 16, 2013 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch010

2

3

2

3

2

2

+ NaBr

T h e p r o d u c t s were u n u s u a l l y s t a b l e t o d i s p r o p o r t i o n a t i o n , a p p a r e n t l y because of p i bonding between the v i n y l group a n d the boron H C 3

H C

\

/

H H H B — C = C H ^± H

3

C \

3

/

H H B-=C—CH

C

3

M e t h y l d i v i n y l , t r i v i n y l , a n d t r i m e t h y l b o r a n e s were o b t a i n e d as w e l l as t h e u n u s u a l b i s ( d i m e t h y l b o r y l ) ethane, p r o b a b l y f r o m ethenyldisodium, w h i c h is k n o w n t o be a n i m ­ purity i n vinylsodium preparations (115). 2 ( C H ) B B r + N a C H = C H N a -> 2 N a B r + ( C H ) B C H = C H B ( C H ) 3

2

3

2

3

Schlesinger prepared

Diborylalkanes a n d Diborylbenzenes.

2

bis(dichloroboryl)-

e t h a n e b y t h e r e a c t i o n of d i b o r o n t e t r a c h l o r i d e w i t h e t h y l e n e B C1 + C H 2

4

2

4

-> C 1 B C H C H B C 1 2

2

2

2

T h e chlorines m a y be replaced b y methoxy groups b y treatment w i t h methanol a n d b y m e t h y l groups b y treatment w i t h d i m e t h y l zinc. C1 BCH CH BC1

2

+ 4 C H O H -> ( C H 0 ) B C H C H B ( O C H )

C1 BCH CH BC1

2

+ 2 ( C H ) Z n -> 2 Z n C l

2

2

2

2

2

2

3

3

3

2

2

2

2

2

3

+ 4HC1

2

+ (CH ) BCH CH B(CH ) 3

2

2

2

3

2

T h e m e t h y l d e r i v a t i v e decomposes s l o w l y t o give t r i m e t h y l b o r a n e a n d unidentified b y ­ products. S i m i l a r p r o d u c t s h a v e been p r e p a r e d b y t h e r e a c t i o n of d i b o r o n t e t r a c h l o r i d e w i t h propene, 2-butene, cyclopropane, a n d acetylene (154). T h e r e p l a c e m e n t of t h e c h l o r i n e s b y h y d r o g e n h a s n o t g i v e n a s t a b l e p r o d u c t (131). M c E w e n h a s also p r e p a r e d t h e m- a n d p - b i s d i h y d r o x y b o r y l benzenes f r o m t h e corresponding dibromobenzenes. T h e d i l i t h i u m b e n z e n e s were p r e p a r e d b y exchange w i t h b u t y l l i t h i u m . T h e l i t h i u m c o m p o u n d was then treated w i t h m e t h y l borate. A similar preparation was carried out using G r i g n a r d procedures. T h e s t r u c t u r e of e a c h c o m p o u n d w a s p r o v e d b y cleavage w i t h b r o m i n e t o t h e r e s p e c t i v e d i b r o m o b e n z e n e a n d b o r i c a c i d . T h e s e c o m p o u n d s were also p r e p a r e d f r o m t h e i n t e r m e d i a t e b r o m o p h e n y l boroxins

(99).

Br— 4

9

LifSu

+ 2C H Br 4

9

L i — / ~ Λ — L - Lii + B B (( O OC CH H )) - > ( C ( C H sHO ^ 0B ) fB / ~ ^B \ ( O C H , ) i " + 2Li+ 33

33

3

2

\=/

Ι6 6HOH

(HO) B B H 3

3

e

2

6 ( 6

_ (CH ) n )

3

r i

T h e e t h y l a n d p r o p y l d i b o r a n e s were also p r e p a r e d b y S c h l e s i n g e r f r o m t h e c o r r e ­ sponding trialkylboranes a n d diboranes. M o n o - , cii-, t r i - , a n d tetraethyldiboranes a n d m o n o - a n d d i p r o p y l d i b o r a n e s w ere i s o l a t e d (138). S y m m e t r i c a l d i m e t h y l d i b o r a n e is p r e p a r e d b y t r e a t i n g m e t h y l d i b o r a n e w i t h f o u r t i m e s i t s v o l u m e o f m e t h y l e t h e r a t d r y ice t e m p e r a t u r e . T h e p r o d u c t s are m e t h y l e t h e r - b o r a n e , w h i c h is stable a t d r y ice t e m p e r a t u r e , a n d s y m m e t r i c a l d i m e t h y l d i b o r a n e .

Downloaded by STANFORD UNIV GREEN LIBR on March 16, 2013 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch010

r

2CH HBH BH 3

2

2

+ 2 ( C H ) 0 -> C H H B H B H C H 3

2

3

2

+ 2(CH ) 0 :B H

3

3

2

3

R o s e n b l u m found that t r i b u t y l b o r a n e decomposed o n heating t o give butene a n d d i b u t y l d i b o r a n e (122). 2 ( C H ) B -> 4 C H 4

9

3

4

8

+ (C H ) B H 4

9

2

2

4

Reactions M a n y o f t h e r e a c t i o n s of t h e a l k y l - a n d a r y l b o r a n e s h a v e b e e n c o v e r e d i n t h e p r e ­ c e d i n g sections. W i t h H y d r o g e n . T h e a l k y l b o r a n e s d o n o t react w i t h h y d r o g e n a t o r d i n a r y t e m ­ p e r a t u r e a n d pressure ; h o w e v e r , s o l i d p y r o l y s i s p r o d u c t s m a y be f o r m e d u n d e r e x t r e m e c o n d i t i o n s (5). W i t h M e t a l s . K r a u s e first r e p o r t e d a r e a c t i o n b e t w e e n s o d i u m a n d t r i p h e n y l borane t o give a colored crystalline product, sodium t r i p h e n y l b o r a t e ( - l ) ether

(C H ) B + N a 6

5

3

> NaB(C H ) 6

5

3

T h e product reacted i n s t a n t l y w i t h oxygen. I t w a s t i t r a t a b l e w i t h i o d i n e i n ether a n d r e a c t e d w i t h a l k y l halides a n d c a r b o n d i o x i d e . T h e e t h e r e a l s o l u t i o n c o n d u c t e d elec­ t r i c i t y . T h e sodium could be removed b y shaking w i t h m e r c u r y . T r i - p - t o l y l b o r a n e b e h a v e d s i m i l a r l y (81). B e n t s t u d i e d s i m i l a r r e a c t i o n s w i t h t r i n a p h t h y l b o r a n e a n d f o u n d t h a t a second a t o m of s o d i u m c o u l d b e a d d e d . H e s t u d i e d t h e c o n d u c t i v i t i e s of t h e o t h e r s o l u t i o n s o f b o t h t h e m o n o - a n d d i s o d i u m c o m p l e x e s (9, 36). B(l—GoH ) 7

+ N a - > NaB(l—Ci H )

3

0

NaB(l—Ci H ) 0

7

3

7

3

+ N a -> N a B ( l — C i H ) 2

9

7

3

C h u has s t u d i e d t h e m a g n e t i c s u s c e p t i b i l i t y a n d v i s i b l e s p e c t r u m of s o d i u m t r i phenylborate(-l). H e found t h a t it was not paramagnetic a n d assumed t h a t the anions m u s t be d i m e r i c . S o d i u m t r i m e s i t y l b o r a t e ( - 1 ) w a s f o u n d t o h a v e one u n p a i r e d e l e c t r o n . L a c k o f d i m e r i z a t i o n i s a p p a r e n t l y due t o steric f a c t o r s . T r i s - l ( 2 - m e t h y l n a p h t h y l ) b o r a n e r e m o v e d t h e s o d i u m f r o m s o d i u m t r i m e s i t y l b o r a t e ( - 1 ) , p r e s u m a b l y because o f h i g h e r e l e c t r o n a f f i n i t y (32, 33). B ( C n H ) , + NaB(CeHii) -> N a B ( C n H ) + B ( C H ) 9

8

1 0

3

9

n

3

K r a u s e r e p o r t e d t h a t u n l i k e t h e t r i a r y l b o r a n e s , t h e t r i a l k y l b o r a n e s d i d n o t react w i t h m e t a l s (80). H o w e v e r , K r a u s has r e p o r t e d t h e r e a c t i o n of d i b u t y l c h l o r o b o r a n e i n ether w i t h sodium-potassium alloy t o give d i b u t y l b o r y l (C H ) BC1 + M - » M C I + (C H ) B 4

9

2

4

9

2

where M is 1 equivalent of sodium potassium alloy. I n comparison W i b e r g found t h a t the reaction of dimethylchloroborane w i t h g a v e t r i m e t h y l b o r a n e a n d a p o l y m e r i c m a t e r i a l (167).

In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.

sodium

93

ADAMS-ORGANOBORON COMPOUNDS

B u r g found that u p o n contact w i t h sodium i n l i q u i d a m m o n i a at —7 8 ° C . t e t r a m e t h y l d i b o r a n e is s p l i t e q u a l l y i n t o a m m o n i a - d i m e t h y l b o r a n e a n d a n u n u s u a l s a l t . (CH ) BH B(CH ) 3

2

2

3

+ 2 N a + N H -> ( C H ) H B — N H

2

3

3

2

+ NaBH(CH )

3

3

2

T h i s salt is stable as a w h i t e s o l i d i n \^acuum e v e n a t 9 0 ° C . I t h y d r o l y z e s r a p i d l y a n d quantitatively to dimethylhydroxyborane, hydrogen, a n d sodium hydroxide. T r i m e t h y l b o r a n e is a d d e d i n l i q u i d a m m o n i a t o f o r m a y e l l o w s o l i d w h i c h is also s t a b l e i n v a c u u m a t 1 0 0 ° C . {23). Na BH(CH )

2

+ 3 H O H -> 2 N a O H + 2 H + ( C H ) B O H

Na BH(CH )

2

+ B(CH ) -* Na BH(CH ) B(CH )

2

3

Downloaded by STANFORD UNIV GREEN LIBR on March 16, 2013 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch010

2

3

2

3

3

2

3

3

2

3

2

3

T h e c o r r e s p o n d i n g p o t a s s i u m salt w a s p r e p a r e d b y t h e same m e t h o d s , b u t a t t e m p t s t o p r e p a r e t h e l i t h i u m salt were u n s u c c e s s f u l . T h e s o d i u m s a l t reduces c h l o r o s i l a n e t o silane a n d reacts w i t h a q u e o u s h y d r o c h l o r i c a c i d t o f o r m a p p a r e n t l y p o l y m e r i c s o d i u m d i m e t h y l b o r y l (30). Na HB(CH ) 2

3

+ C l S i H -> N a C l + S i H

2

3

S o d i u m d i m e t h y l b o r y l reacted h i g h l y r e d u c i n g residue (25).

+ [NaB(CH ) ]x

4

3

with ammonia to form

NaB(CH ) 3

+ N H -> ( C H ) B N H

2

3

3

2

2

aminodimethylborane

and a

+ NaH?

2

Reactions with M e t a l H y d r i d e s or Organometallics. Fisher prepared lithium b o r o h y d r i d e b y t h e h y d r o g é n a t i o n of a l i t h i u m h y d r i d e - t r i e t h y l b o r a n e a d d u c t a t 2 4 0 ° C . u n d e r 2000 p . s . i . i n c y c l o h e x a n e (50). LiBH(C H ) 2

5

+ 3H

3

2 4

2

°° > LiBH C ,

+ 3C H

4

2

6

3000 p.s.i.

T r i e t h y l b o r a n e f o r m s a l i q u i d 1 t o 1 a d d u c t w i t h s o d i u m h y d r i d e w h i c h has n o t b e e n c h a r a c t e r i z e d . L i t h i u m h y d r i d e dissolves i n a d i e t h y l e t h e r s o l u t i o n of t r i m e t h y l b o r a n e a n d is r e c o v e r e d as l i t h i u m h y d r i d e u p o n e v a p o r a t i o n of t h e s o l u t i o n . E v i d e n t l y a r e v e r s i b l y f o r m e d l i t h i u m h y d r i d e - t r i m e t h y l b o r a n e a d d u c t i s r e s p o n s i b l e (19). L i H + B ( C H ) ^± L i B H ( C H ) 3

3

3

3

A l u m i n u m h y d r i d e i n ether a n d t r i m e t h y l b o r a n e reacted; however, t h e p r o d u c t could n o t be freed f r o m the ether (132). Schlesinger found t h a t t r i m e t h y l b o r a n e reacted w i t h l i t h i u m a l u m i n u m h y d r i d e t o form lithium methyltrihydroaluminate and dimethylaluminum hydride (160). LiAlH

4

+ ( C H ) B -> L i A l H C H 3

3

3

+ (CH ) A1H

3

3

2

T r i m e t h y l b o r a n e reacted w i t h u r a n i u m b o r o h y d r i d e t o give m e t h y l a t e d derivatives. M e t h y l t r i h y d r o b o r a t o t r i s ( t e t r a h y d r o b o r a t o ) u r a n i u m is t h e m o s t v o l a t i l e k n o w n c o m ­ p o u n d of u r a n i u m . T e t r a k i s ( m o n o m e t h y l t r i h y d r o b o r a t o ) u r a n i u m w a s also i s o l a t e d . T h e s e m a t e r i a l s r e a c t e d w i t h w a t e r a n d h y d r o g e n c h l o r i d e as follows (129): U ( B H ) ( B H C H ) + 1 2 H 0 -> U ( O H ) + 1 5 H + C H B ( O H )

2

U ( B H ) ( B H C H ) + 6HC1 -> U C 1 + 6 H + 3/2 B H

3

4

4

3

3

3

3

3

2

4

3

2

4

3

2

2

U ( B H C H ) + 1 2 H C 1 -> U C 1 + 1 2 H + 4 C H B C 1 3

3

4

2

3

6

+ 3HB0

+ CH BC1

2

2

2

E a r l y a t t e m p t s t o react t r i m e t h y l b o r a n e w i t h m e t a l a l k y l s a n d a r y l s f a i l e d (153). H o w e v e r , Johnson found that t r i b u t y l b o r a n e reacted exothermally w i t h d i p h e n y l m a g nesium i n ether. Separation into t w o layers occurred. O n l y o n e m o l e of t r i b u t y l ­ b o r a n e r e a c t e d w i t h o n e m o l e of d i p h e n y l m a g n e s i u m . T r i b u t y l b o r a n e r e a c t e d e x o ­ t h e r m a l l y w i t h e t h y l l i t h i u m , b u t less v i g o r o u s l y w i t h b u t y l l i t h i u m a n d b u t y l m a g n e s i u m b r o m i d e . T r i b u t y l b o r a n e d i d n o t react w i t h d i b u t y l z i n c (69). LiC H 2

5

+ B(C H ) 4

Mg(C H ) 6

5

2

9

LiB(C H ) C H

3

4

9

3

2

5

+ B ( C H ) -> C H M g B ( C H ) C H 4

9

3

6

5

4

9

3

6

ô

In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.

94

ADVANCES IN CHEMISTRY SERIES

Schlesinger found that e t h y l l i t h i u m added equal m o l a r quantities of t r i m e t h y l ­ borane to form a white crystalline adduct (128). LiC H

Downloaded by STANFORD UNIV GREEN LIBR on March 16, 2013 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch010

2

+ B ( C H ) -> L i B ( C H ) C H

6

3

3

3

3

2

6

H u r d prepared l i t h i u m tetramethylborate b y the reaction of m e t h y l l i t h i u m w i t h t r i m e t h y l b o r a n e i n e t h y l ether. T h i s m a t e r i a l was stable i n v e r y d r y air, b u t sometimes ignited i n moist a i r . I t was soluble i n ether a n d dissolved w i t h o u t reaction i n water. A c i d i f i c a t i o n of t h e aqueous solution resulted i n t h e e v o l u t i o n of t r i m e t h y l b o r a n e . E l e c t r o l y s i s o f t h e a q u e o u s s o l u t i o n g a v e m e t h a n e , e t h a n e , a n d c y c l o p r o p a n e (65). W i t t i g f o u n d t h a t t r i p h e n y l b o r a n e forms stable complexes w i t h l i t h i u m h y d r i d e a n d b u t y l l i t h i u m (70). W i t t i g first reported the p r e p a r a t i o n of a t e t r a p h e n y l b o r a t e a n i o n b y t h e reaction of t r i p h e n y l b o r a n e w i t h p h e n y l l i t h i u m . LiC H 6

+ Β(Ο Η ) -> Li+B(C»H.)r

5

β

δ

3

H e also p r e p a r e d t h e h y d r o t r i p h e n y l b o r a t e a n i o n b y t h e r e a c t i o n o f l i t h i u m h y d r i d e with triphenylborane. L i H + B ( C H ) -> Li+ + B H ( C H ) r 6

6

3

6

5

A n u m b e r o f salts o f t h e t e t r a p h e n y l b o r a t e a n i o n were p r e p a r e d b y m e t a t h e s i s a n d t h e usefulness o f t h i s i o n i n t h e g r a v i m e t r i c d e t e r m i n a t i o n of p o t a s s i u m , r u b i d i u m , c e s i u m , a n d a m m o n i u m ions w a s p o i n t e d o u t . T h e u n u s u a l c o m p o u n d t e t r a p h e n y l p h o s p h o n i u m tetraphenylborate was prepared b o t h metathetically a n d b y the reaction of p e n t a phenylphosphorus a n d triphenylborane. P(C H ) 6

5

+ Β ( 0 Η ) -> ( C H ) P + + B ( C H ) -

8

6

δ

3

6

5

4

6

6

4

A t e t r a p h e n y l b i s m u t h o n i u m a n d a d i p h e n y l i o d o n i u m s a l t were s i m i l a r l y p r e p a r e d . H e also p r e p a r e d c y a n o t r i p h e n y l b o r a t e s b y t h e r e a c t i o n o f t r i p h e n y l b o r a n e w i t h m e t a l c y ­ a n i d e s a n d c y a n o t r i h y d r o b o r a t e s b y t h e r e a c t i o n of l i t h i u m b o r o h y d r i d e w i t h h y d r o ­ cyanic acid. These complex cyanoborates a r e r e m a r k a b l y stable t o h y d r o l y s i s a n d thermal decomposition. B ( C H ) + N a C N -> Na+ + B ( C N ) ( C H ) e

6

6

L1BH4

+ H O N -> L i

+ BH CN- + H

+

3

6

3

2

T h e h y d r o x y t r i p h e n y l b o r a t e a n i o n a n d t h e p h e n y l e t h y n y l t r i p h e n y l b o r a t e s were pared similarly.

pre­

O H " + ( C H ) B -> B ( O H ) ( C H ) 6

5

3

6

5

3

C H C = C - + ( C H ) B -> B ( C = C — C I I ) ( C H ) 6

5

6

5

3

6

5

6

5

3

T h e s e c o m p o u n d s were u s u a l l y a n a l y z e d b y d e c o m p o s i t i o n w i t h a q u e o u s m e r c u r i c c h l o ­ r i d e (172). (C H ) B- + 4HgCl 6

5

4

2

+ 3 H O H -> 4 C H H g C l + 4C1" + 3H+ + 3 B ( O H ) 6

5

8

T h e use o f t h e t e t r a p h e n y l b o r a t e a n i o n t o p r e c i p i t a t e t h e h e a v i e r a l k a l i m e t a l s w a s p a t e n t e d b y H e y l (62). A g r e a t d e a l of s t u d y h a s b e e n m a d e o f t h i s i o n as a n a n a ­ lytical tool f o r the alkali metals. T h e analysis m a y be carried o u t gravimetrically, t i t r i m e t r i c a l l y w i t h s i l v e r n i t r a t e , o r c o n d u c t o m e t r i c a l l y (4, 51, 54, 57). K r a u s has studied the electrolytic properties of several t r i a r y l b o r a n e complexes w i t h s m a l l a n i o n s s u c h as h y d r o x i d e , fluoride, a n d a m i d e (72). Reactions with Oxygen a n d O x i d i z i n g Agents. G r u m m i t t r e p o r t e d t h a t t h e ease of o x i d a t i o n o f a l k y l b o r a n e s decreased w i t h i n c r e a s i n g a l k y l c h a i n l e n g t h a n d i n ­ creased r a p i d l y i n t h e o r d e r p r i m a r y , s e c o n d a r y , t e r t i a r y . H e f o u n d i n d i c a t i o n o f p e r o x i d e i n t e r m e d i a t e s (60). B a m f o r d a n d N e w i t t f o u n d t h a t t r i m e t h y l b o r a n e o x i d i z e d m u c h less r e a d i l y t h a n

In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.

95

ADAMS—ORGANOBORON COMPOUNDS

t r i p r o p y l b o r a n e , t h a t t h e r e a c t i o n w a s a c h a i n process b e g i n n i n g a n d e n d i n g o n w a l l s , a n d t h a t i t w a s s t r o n g l y i n h i b i t e d b y m i x t u r e s of t r i f l u o r o b o r a n e a n d w a t e r ( 7 ) . T h e y found indications that trimethylborane formed a 1 to 1 addition product w i t h oxygen. Verhoek has corroborated this a n d isolated the adduct. H e f o u n d i t t o b e stable t o a i r a t r o o m t e m p e r a t u r e a n d a t m o s p h e r i c pressure a n d t o b e e q u i v a l e n t i n o x i d i z i n g p o w e r t o a t y p i c a l h y d r o p e r o x i d e o f t h e same m o l e c u l a r w e i g h t [157). T h e d i a r y l h y d r o x y b o r a n e s react w i t h c h l o r i n e w a t e r o r b r o m i n e w a t e r t o y i e l d t h e aryldihydroxyborane according to the following equation. Ar BOH + X 2

+ H 0 -> A r B ( O H ) + H X + A r X

2

2

2

Downloaded by STANFORD UNIV GREEN LIBR on March 16, 2013 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch010

I n t h e presence of excess h a l o g e n t h e a r y l d i h y d r o x y b o r a n e is d e c o m p o s e d t o b o r i c a c i d a c c o r d i n g t o t h e e q u a t i o n (1, 103) ArB(OH)

2

+ X

2

+ H 0 -> A r X + H X + B ( O H ) 2

3

K r a u s e r e p o r t e d t h a t t r i b e n z y l b o r a n e is s i m i l a r t o a l k y l b o r a n e s i n i t s l o w m e l t i n g point a n d reactivity w i t h oxygen. A l t h o u g h 1 - n a p h t h y l b o r a n e i s s t a b l e i n a i r , m o s t of the a r y l b o r a n e s o x i d i z e i n a i r t o f o r m t h e a r y l b o r o n o x i d e , b u t d o n o t i g n i t e . T h e y also react r a p i d l y w i t h alcohols (78, 79, 80, 82). A r B + 1/2 0 + H 0 -> A r B O + 2 A r O H 3

2

2

P h e n y l d i h y d r o x y b o r a n e reacts w i t h h y d r o g e n p e r o x i d e t o y i e l d p h e n o l a n d b o r i c a c i d . I t also reacts w i t h 5 0 % s o d i u m h y d r o x i d e , w a t e r u n d e r p r e s s u r e , o r b o i l i n g c o n ­ c e n t r a t e d h y d r o c h l o r i c a c i d t o g i v e b e n z e n e a n d b o r i c a c i d (1). C H B(OH) 6

6

+ H 0

2

2

>C H OH + B(OH)

2

6

+ H 0 ^-^> C H 2

6

5

+ B(OH)

6

3

3

T h e d i a r y l h y d r o x y b o r a n e s react w i t h hydrogen peroxide t o y i e l d a r y l d i h y d r o x y boranes a c c o r d i n g t o t h e e q u a t i o n : R B O H + H 0 -> R B ( O H ) + R O H 2

2

2

2

I n t h e presence of excess h y d r o g e n p e r o x i d e b o r i c a c i d i s f o r m e d (101) : RB(OH)

2

+ H 0 -> R O H + B ( O H ) 2

2

3

T h e acid dissociation constants of a large n u m b e r of t h e a r y l d i h y d r o x y b o r a n e s h a v e b e e n s t u d i e d (173). Several a r y l d i h y d r o x y boranes are r a p i d l y oxidized b y alkaline potassium p e r m a n ­ g a n a t e a t r o o m t e m p e r a t u r e . B o t h t h e 1- a n d 2 - n a p h t h y l d e r i v a t i v e s g i v e p h t h a l i c a c i d . o - T o l y l a n d o- a n d p - p h e n e t y l d e r i v a t i v e s a r e also r a p i d l y o x i d i z e d . T h e r a t e of o x i d a t i o n w i t h m - p h e n e t y l is m o d e r a t e , w h i l e p h e n y l a n d m - a n d p - t o l y l a r e r e s i s t a n t t o o x i d a t i o n of t h e benzene r i n g . T h e r e a c t i o n p r o b a b l y p r o c e e d s t h r o u g h t h e r e m o v a l of t h e d i h y d r o x y b o r y l g r o u p b y o x i d a t i o n . P h e n o l s a r e p r o d u c e d w h i c h a r e i n g e n e r a l r a p i d l y o x i d i z e d (10). T h e t o l y l d i h y d r o x y b o r a n e s are oxidized b y potassium permanganate t o the c a r b o x y l p h e n y l d i h y d r o x y b o r a n e (71). B e n z y l - a n d n a p h t h y l d i h y d r o x y b o r a n e s reduce s i l v e r n i t r a t e (70, 108). C i o H B ( O H ) + 2Ag+ + 2 H O H -> C i H O H + B ( O H ) + 2 A g + 211+ 7

2

0

7

3

Reactions with Ammonia and Amines T h e r e a c t i o n s of a l k y l b o r a n e s w i t h a m m o n i a a n d a m i n e s h a v e b e e n s t u d i e d e x t e n ­ s i v e l y . F r a n k l a n d first r e p o r t e d t h e a d d u c t of t r i e t h y l b o r a n e a n d a m m o n i a (53). C o p l e y first discussed t h e i s o s t e r i s m of b o r o n - n i t r o g e n c o m p o u n d s w i t h c a r b o n c o m p o u n d s (38). B r o w n h a s m a d e a n e x t e n s i v e s t u d y i n t h i s field a n d h a s s h o w n steric effects o n m a n y o r g a n i c r e a c t i o n m e c h a n i s m s b y u s i n g s t e r i c a l l y s i m i l a r a l k y l -

In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.

ADVANCES IN CHEMISTRY SERIES

96

Downloaded by STANFORD UNIV GREEN LIBR on March 16, 2013 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch010

b o r a n e - a l k y l a m i n e r e a c t i o n s . A s a r e s u l t t h e s t a b i l i t i e s a n d d i s s o c i a t i o n pressures o f m a n y a m i n e - b o r a n e s h a v e b e e n m e a s u r e d {17). H e reports t h a t trimethylborane a n d triethylborane are most easily handled a n d p u r i f i e d as t h e t r i m e t h y l a m i n e a n d a m m o n i a a d d u c t s , r e s p e c t i v e l y . T h e t r i m e t h y l b o ­ r a n e w a s freed f r o m t r i m e t h y l a m i n e b y a series o f r a p i d d i s t i l l a t i o n s . T h e t r i e t h y l b o ­ r a n e w a s freed f r o m a m m o n i a b y t r e a t m e n t w i t h h y d r o g e n c h l o r i d e (16). Schlesinger reports t h a t the alkyldiboranes a d d t w o moles of a m m o n i a a n d t h a t the s t a b i l i t y of the diammoniates of methyldiborane, dimethyldiborane, t r i m e t h y l d i borane, a n d tetramethyldiborane t o pyrolysis a n d disproportionation is greater t h a n t h a t of t h e m e t h y l diboranes themselves. T h e s t a b i l i t y increases w i t h i n c r e a s i n g n u m ­ ber of m e t h y l groups. O n p y r o l y s i s these m a t e r i a l s m a y b e c o n v e r t e d t o B - m e t h y l a m i n o b o r a n e s a n d b o r a z i n e s (138, 139)—e.g. (CH ) B H 3

4

2

+ 2NH

2

>2H N : B(CH ) H

3

3

3

2

200° C .

H N :B(CH ) H 3

3

>H NB(CH )

2

2

3

+ H

2

2

350° C .

CH

+ 1/3 ( H N B C H )

4

3

<

3

1

T r i m e t h y l a m i n e reacts w i t h t r i m e t h y l b o r a n e t o f o r m a 1 t o 1 a d d u c t . T r i m e t h y l ­ a m i n e reacts w i t h t e t r a m e t h y l d i b o r a n e t o f o r m t r i m e t h y l a m i n e - d i m e t h y l b o r a n e . T r i m e t h y l a m i n e a n d s y m m e t r i c a l d i m e t h y l d i b o r a n e give t r i m e t h y l a m m e - m e t h y l b o r a n e . T h e s t a b i l i t y o f these c o m p o u n d s t o d e c o m p o s i t i o n i n t o t h e o r i g i n a l r e a c t a n t s decreases w i t h the increasing n u m b e r of m e t h y l groups o n boron. Stability to disproportion to t r i m e t h y l a m i n e - t r i m e t h y l b o r a n e a n d t r i m e t h y l a m i n e - b o r a n e increases w i t h i n c r e a s i n g numbers of m e t h y l groups o n b o r o n . I n reaction w i t h hydrogen chloride, increased m e t h y l a t i o n o f t h e b o r o n increases t h e r a t e a t w h i c h h y d r o g e n is l i b e r a t e d (139). (CH ) N + B(CII ) 3

3

3

(CH ) N : B(CH )

3

3

3

3

3

2(CH ) N + (CH ) B H ^ 2(CH ) N : BH(CH ) 3

3

3

4

2

2

3

2(CH ) N + C H H B H B H C H 3

3

3

2

3

3

2

^± 2 ( C H ) N : B H C H

3

3

3

2

3

HCl

(CH ) N : BC1 CH 3

3

2

+ H <

3

2

' (CH ) N :B(CH ) 3

3

3

+ (CH ) N : B H 3

3

3

3

W i b e r g f o u n d t h a t condensation of equal m o l a r amounts of t r i m e t h y l b o r a n e a n d aniline formed a crystalline adduct. W h e n this was heated t o 3 0 0 ° C , t w o products were f o r m e d , p h e n y l a m i n o d i m e t h y l b o r a n e a n d p h e n y l i m i n o m e t h y l b o r a n e . T h i s p r o d ­ uct m a y trimerize t o the borazine (164). 300° C

C H NH 6

5

2

+ B ( C H ) -> C H H N : B ( C H ) 3

3

6

5

2

3

>2CH

3

4

+ C H N=BCH 6

5

3

B u r g f o u n d t h a t t r i m e t h y l b o r o x i n reacts w i t h a m m o n i a t o f o r m a d d u c t s h a v i n g 1 mole of a m m o n i a a n d 2 moles of a m m o n i a per mole of t r i m e t h y l b o r o x i n , respectively. T r i m e t h y l a m i n e f o r m s a 1 t o 1 a d d u c t w i t h t r i m e t h y l b o r o x i n (20). Miscellaneous Reactions. T e t r a m e t h y l d i b o r a n e reacts w i t h m e t h y l h y d r o g e n s u l ­ fide t o f o r m t h e n e w l i q u i d c o m p o u n d m e t h i o d i m e t h y l b o r a n e (26). (CH ) B H 3

4

2

2

+ 2HSCH

3

-> 2 ( C H ) B S C H 3

2

3

M e t h i o d i m e t h y l b o r a n e h a s also been p r e p a r e d f r o m m e t h y l h y d r o g e n sulfide a n d dimethylbromoborane. T h i s m a t e r i a l d e c o m p o s e s s l o w l y t o t r i m e t h y l b o r a n e a n d less v o l a t i l e m a t e r i a l s (29). (CH ) BBr + H S C H 3

2

3

-> H B r + ( C H ) B S C H - » ( C H ) B + ? 3

2

3

3

3

In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.

ADAMS—ORGANOBORON COMPOUNDS

97

T r i m e t h y l p h o s p h i n e f o r m s a 1 t o 1 a d d u c t w i t h t r i m e t h y l b o r a n e (18) ( C H ) P + B ( C H ) -> ( C H ) P : B ( C H ) 3

3

3

3

3

3

3

3

A n u m b e r of reactions of t r i a l k y l b o r a n e s w i t h o t h e r c o m p o u n d s h a v e been d e ­ s c r i b e d . B u r g has s t u d i e d t h e r e a c t i o n s w i t h p h o s p h i n e a n d a l k y l p h o s p h i n e s e x t e n ­ s i v e l y . H e has f o u n d t h a t t h e y m a y b e p y r o l y z e d t o t r i m e r i c p h o s p h i n o b o r a n e s . T h e s e p r o d u c t s are e x t r e m e l y stable t o t h e r m a l a n d a t m o s p h e r i c d e c o m p o s i t i o n (28). C h a t t f o u n d e v i d e n c e for the l a t t i c e c o m p o u n d 3 C H - 2 ( B C H ) i n the s o l i d s y s ­ t e m e t h y l e n e - t r i m e t h y l b o r a n e . H e r e p o r t e d n o a s s o c i a t i o n i n t h e l i q u i d phase (31). T h e b e n z y l - a n d a r y l d i h y d r o x y b o r a n e s are r e a d i l y c l e a v e d b y m e r c u r i c c h l o r i d e t o f o r m the a r y l m e r c u r i c c h l o r i d e a n d b o r i c a c i d (70, 71).

Downloaded by STANFORD UNIV GREEN LIBR on March 16, 2013 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch010

2

HOH + H CC H B(OH) 3

6

4

2

4

3

8

+ H g C l -> C H C H H g C l + B ( O H ) + H C 1 2

3

6

4

3

P h e n y l d i h y d r o x y b o r a n e is c l e a v e d b y h o t m e r c u r o u s b r o m i d e s o l u t i o n s t o give p h e n y l m e r c u r y b r o m i d e . C u p r i c c h l o r i d e gives p h e n y l c h l o r i d e , c u p r i c b r o m i d e gives p h e n y l b r o m i d e , a n d c u p r i c c y a n i d e give some p h e n y l c y a n i d e , m o s t of t h e p r o d u c t b e i n g b e n ­ zene i n the l a t t e r case. C a d m i u m b r o m i d e a n d zinc c h l o r i d e give benzene a n d p h e n y l ­ dihydroxyborane. Phenyldihydroxyborane c a n be nitrated i n sulfuric acid below — 7 0 ° C . t o give ra-nitrophenyldihydroxyborane. T h i s m a t e r i a l is cleaved b y cupric chloride, mercuric chloride, bromine, a n d hydrogen peroxide i n a manner similar t o phenyldihydroxyborane. H o t aqueous s o l u t i o n s o f b e r y l l i u m , m a g n e s i u m , o r c a l c i u m c h l o r i d e s d o n o t a t t a c k p h e n y l d i h y d r o x y b o r a n e (1). T h e a r y l d i h y d r o x y b o r a n e s react w i t h t h a l l i c c h l o r i d e a n d t h a l l i c b r o m i d e t o give the d i a r y l t h a l l i u m h a l i d e (104). 2 H O H + 2 A r B ( O H ) + T1C1 -> A r , T l C l + 2 B ( O H ) + 2 H C 1 2

3

3

T r i p h e n y l b o r a n e is stable i n n i t r o g e n o r c a r b o n d i o x i d e (78).

Uses of Alkyl- and Arylboranes T r i m e t h y l b o r a n e is m o r e stable a n d m o r e sensitive t h a n t r i f l u o r o b o r a n e i n p r o p o r ­ t i o n a l n e u t r o n c o u n t e r s (61). A c o n d e n s a t i o n p r o d u c t of c h l o r o v i n y l d i c h l o r o b o r a n e w i t h p o l y ( v i n y l a l c o h o l ) has been p a t e n t e d as a p o l y m e r w h i c h does n o t swell i n w a t e r (127). M a r t i n has p a t e n t e d the p r e p a r a t i o n of t h i n b o r o n coatings b y t h e p y r o l y s i s of a l k y l b o r a n e s o v e r a n o b j e c t (100). B o w m a n has c a l c u l a t e d t h e t h e o r e t i c a l e x h a u s t v e l o c i t y o f t r i e t h y l b o r a n e as a r o c k e t f u e l (13). G r i s d a l e has f o u n d the p y r o l y s i s of t r i p r o p y l b o r a n e u s e f u l i n t h e p r e p a r a t i o n o f b o r o n - c a r b o n coatings. A f i l m of b o r o n a n d c a r b o n is d e p o s i t e d o n a c e r a m i c s u p p o r t at a p p r o x i m a t e l y 1 0 0 0 ° C . (58). L i n c o l n has p a t e n t e d t h e a d d i t i o n of a l k y l a l k o x y b o r a n e s t o h y d r o c a r b o n oils (94). D a r l i n g has f o u n d t h a t t r i a l k y l b o r a n e s reduce t h e o c t a n e r e q u i r e m e n t increase due to l e a d e d gasolines to 0 to 4 0 % o f t h e n o r m a l v a l u e (63). S m i t h has p a t e n t e d the use o f a l k y l b o r a n e s t o s t a b i l i z e a m i n e s against d i s c o l o r a ­ t i o n (145). SafTord has p a t e n t e d a n elastic p o l y s i l o x a n e c o n t a i n i n g s m a l l a m o u n t s of b o r o n h y d r i d e s . D i p h e n y l d e c a b o r a n e i s suggested a s the b o r o n source (126). R o s e n has suggested t h e use of e t h y l a m i n e - t r i p h e n y l b o r a n e as a n o x i d a t i o n i n h i b i t o r i n l u b r i c a n t s a n d gasoline (121). Stout and C h a m b e r l a i n extensively investigated a l k y l b o r o n oxygen polymers a n a l ­ ogous t o silicones a n d f o u n d t h e m t o b e b o t h h e a t - a n d m o i s t u r e - s e n s i t i v e (150). S a f f o r d a n d H u r d h a v e p a t e n t e d a p o l y m e r u s i n g a b o r o n h y d r i d e as a p o l y ­ m e r i z a t i o n c a t a l y s t . D i p h e n y l d e c a b o r a n e i s suggested as one of the c a t a l y s t s (126). N i j i m o t o has p a t e n t e d t h e p r e p a r a t i o n of a h e a t - r e s i s t a n t film f r o m p h e n y l d i f l u o r o b o r a n e a n d d i p h e n y l d i c h l o r o s i l a n e (111).

In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.

98

ADVANCES IN CHEMISTRY SERIES

Carbon Monoxide Derivatives T h e f o r m a t i o n o f c a r b o n m o n o x i d e - b o r a n e w a s first o b s e r v e d b y B u r g w h e n d i borane was treated w i t h h i g h concentrations of carbon m o n o x i d e u n d e r pressures. B H

Downloaded by STANFORD UNIV GREEN LIBR on March 16, 2013 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch010

2

6

+ 2CO ^

2BH CO 3

T h e product was isolated at l i q u i d nitrogen temperatures. I t decomposed easily a t r o o m t e m p e r a t u r e s . T h e rates o f d e c o m p o s i t i o n were s t u d i e d (21, 27). B u r g h a s r e p o r t e d t h a t p e n t a b o r a n e ( l l ) reacts w i t h c a r b o n m o n o x i d e t o f o r m a p p a r e n t l y c a r b o n m o n o x i d e - t r i b o r a n e . T h i s m a t e r i a l decomposes t o c a r b o n m o n o x ­ ide a n d a colorless o i l w h i c h reacts w i t h c a r b o n m o n o x i d e - b o r a n e t o g i v e a 6 0 % y i e l d o f t e t r a b o r a n e . U n l i k e c a r b o n m o n o x i d e - b o r a n e , i t a b s o r b s t r i m e t h y l a m i n e w i t h o u t loss of c a r b o n m o n o x i d e (26). B5H11

+ C O -> B H C O + ? 3

7

B H C O + BH3CO - > B H 3

7

4

1 0

+ 2CO

B H C O + N ( C H ) -> ? 3

7

3

3

L a t e r w o r k has i n d i c a t e d t h a t t h e p r e v i o u s l y r e p o r t e d c a r b o n m o n o x i d e - p o l y b o r a n e may be B H C O . I t has been made i n i m p r o v e d y i e l d f r o m tetraborane instead of p e n t a b o r a n e (11, 29). 4

8

T U T ™ -4- C O —» R . H « C O ?

Bibliography (1) Ainley, A. D., Challenger, F., J. Chem. Soc. 1930, 2171-80. (2) Arnold, H . R., U. S. Patent 2,402,589 (June 25, 1946). (3) Arthur, P., Annino, R., Donahoo, W. P., Oklahoma A. andM.College, private com­ munication. (4) Arzneimmittel-Forsch. 4, 38-40 (1954). (5) Austin, Mighton, Office Sci. Research & Development, 4857 (March 25, 1945). (6) Auten, R. W., Kraus, C. Α., J. Am. Chem. Soc. 74, 3398-401 (1952). (7) Bamford, C. H., Newitt, D. M., J. Chem. Soc. 1946, 495-701. (8) Bauer, S. H., Hastings, J. M., J. Am. Chem. Soc. 64, 2686-91 (1942). (9) Bent, H. E., Dorfman, M., Ibid., 54, 2132-3 (1932) ; 57, 1259-61, 1924-8 (1935). (10) Bettman, B., Branch, G. E., Ibid., 56, 1616-7 (1954). (11) Booth, R. B., Kraus, C. Α., Ibid., 74, 1415-7 (1952). (12) Borisov, A. E., Izvest. Akad. Nauk. S.S.S.R. Otdel. Khim. Nauk. 1951, 402-8. (13) Bowman, N., J. Space Flight 2, 1-4 (1950). (14) Brokaw, R. S., Badin, Ε. J., Pease, R. N., J. Am. Chem. Soc. 70, 1921-2 (1948) ; 72, 5263-6 (1950). (15) Brokaw, R. S., Pease, R. N., Ibid., 72, 3237-41 (1950). (16) Brown, H. C., Ibid., 67, 374-8 (1945). (17) Brown, H. C., et al., Ibid., 64, 325-9 (1942) ; 66, 431-5 (1944) ; 75, 1-6 (1953) ; Science 103, 385-7 (1946) ; Record Chem. Progr. 14, 83-97 (1953). (18) Brown, H. C., Harris, R. H., J. Am. Chem. Soc. 71, 2751-3 (1949). (19) Brown, H . C., Schlesinger, H . I., Sheft, I., Ritter, D. M., Ibid., 75, 192-5 (1953). (20) Burg, A. B., Ibid., 62, 2228-34 (1940). (21) Burg, A. B., Banus, J., Ibid., 74, 3482-5 (1952). (22) Ibid., 76, 3903-5 (1954). (23) Burg, A. B., Campbell, G. W. Jr., Ibid., 74, 4744-8 (1952). (24) Burg, A. B., et al., Univ. S. Calif., 3rd Annual Tech. Report, Nov. 1, 1949. (25) Ibid., 4th Annual Tech. Rept., Nov. 1, 1950. (26) Ibid., 6th Annual Tech. Rept., Nov. 1, 1952. (27) Burg, A. B., Schlesinger, H. I., J. Am. Chem. Soc. 59, 780-7 (1937). (28) Burg, A. B., Wagner, R. I., Ibid., 75, 3872-7 (1953). (29) Burg, A. B., Wagner, R. I., Univ. S. Calif., 8th Annual Tech. Rept., Nov. 1, 1954. (30) Campbell, G. W., Jr., Pepperdine College, Annual Summer Rept., Contract DAo4495, ORD 377 (Sept. 1, 1953). (31) Chatt, J., J. Chem. Soc. 1949, 3340-8. (32) Chu, T. L., J. Am. Chem. Soc. 75, 1730-2 (1953). (33) Chu, T. L., Weisman, T. J., Abstracts ACS, Meeting, Dallas, Tex., April 1956. In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.

Downloaded by STANFORD UNIV GREEN LIBR on March 16, 2013 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch010

ADAMS-ORGANOBORON COMPOUNDS (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53)

99

Coates, G. E., J. Chem. Soc. 1950, 3481-2. Coffin, K . P., Bauer, S. H., J. Phys. Chem. 59, 193-9 (1955). Coolidge, A. S., Bent, H . E., J. Am. Chem. Soc. 58, 505-6 (1936). Copaux, Α., Bull. soc. chim. France (3) 21, 776-8 (1899). Copley, G. N., School Sci. Rev. 24, 33-6 (1942). Cowan, R. D., J. Chem. Phys. 17, 218 (1949). Ibid., 18, 1101-7 (1950). Davidson, N., Brown, H . C., J. Am. Chem. Soc. 64, 316-24 (1942). Deford, D. D., Northwestern Univ., Rept. CCC-1024-TR-81 (1954). Dworkin, A. S., Van Artsdalen, E. G., J. Am. Chem. Soc. 76, 4316 (1954). Fischer, D. S., Shell Development Co., Progr. Rept., December 1952 to January 1953. Ibid., BA 18-108-Cnl-4564, December 1952 to May 1953. Ibid., Tech. Rept., December 1952 to January 1953. Ibid., April to May 1953. Ibid., June to July 1953. Ibid., December 1953 to January 1954. Fisher, N. G., U. S. Patent 2,729,540 (Jan. 3, 1956). Flaschka, H., Amin, A. M., Holasek, Α., Ζ. anal. Chem. 138, 241-4 (1953). Frankland, E., J. Am. Chem. Soc. 60, 121 (1938). Frankland, E., Phil. Trans. Roy. Soc. London 152, 167-83 (1892) ; Proc. Roy. Soc. (London) 10, 568, 25, 165-8 (1876) ; J. Chem. Soc. 15, 363-81 (1862) ; Ann. Chem. Liebigs 115, 319-22 (1860) ; 124, 129-57 (1862) ; Jahresber. 1876, 468-9. (54) Geilmann, W., Gabauhr, W., Z. anal. Chem. 139, 161-81 (1953). (55) Gilman, H., Marple, Κ. E., Rec. trav. chim. 55, 76-9 (1936). (56) Gilman, H., Vernon, C. C., J. Am. Chem. Soc. 48, 1063-6 (1926). (57) Glaus, G. H., Chemist Analyst 42, 50-5 (1953). (58) Goubeau, J., Keller, Η., Z. anorg. allgem. Chem. 267, 1-26 (1951). (59) Grisdale, R. C., Pfister, A. C., Roosbroeck, W. Van, Bell System Tech. J. 30, 271-314 (1951). (60) Grummitt, O., J. Am. Chem. Soc. 64, 1811-14 (1942). (61) Huaser, U. Η., Z. Naturforsch. 7a, 781-5 (1952). (62) Heyl, W., Brit. Patent 705,719 (Oct. 10, 1954). (63) Hughes, E . C., Darling, S. M., Bartleson, J. D., Dingle, A. R., Jr., Ind. Eng. Chem. 43, 2841-4 (1951). (64) Hurd, D. T., J. Am. Chem. Soc. 70, 2053-5 (1948). (65) Hurd, D. T., J. Org. Chem. 13, 711-13 (1948). (66) Hurd, D. T., U. S. Patent 2,446,008 (July 27, 1948) ; Brit. Patent 618,358 (Feb. 21, 1949). (67) Johnson, J. R., Snyder, H . R., Van Campen, M . G., Jr., J. Am. Chem. Soc. 60, 115-21 (1938). (68) Johnson, J. R., Snyder, H . R., Van Campen, M . G., Jr., J. Chem. Soc. 1952, 2987-91. (69) Johnson, J. R., Van Campen, M. G., Jr., J. Am. Chem. Soc. 60, 121 (1938). (70) Khotinsky, E., Melamed, M., Ber. deut. chem. Ges. 42, 3090-6 (1909). (71) Konig, W., Scharrnbeck, W., J. prakt. Chem. 128, 153-70 (1930). (72) Kraus, C. Α., et al., J. Am. Chem. Soc. 55, 2776-85 (1933) ; 62, 1143-4, 2247-50 (1940) ; 69, 1016-20, 1731-5 (1947) ; 71, 3288-93 (1949) ; Nucleus 13, 213-21 (1936) ; Trans. Faraday Soc. 32, 586-93 (1936). (73) Kraus, C. Α., J. Chem. Educ. 29, 548-9 (1952). (74) Krause, E., Ber. deut. chem. Ges. 57B, 813-8 (1924). (75) Krause, E., German Patent 371,467 (1924). (76) Krause, E., Dittmer, P., Ber. deut. chem. Ges. 63B, 2347-53 (1930). (77) Krause, E., Nitsche, R., Ibid., 54B, 2784-91 (1921). (78) Ibid., 55B, 1261-5 (1922). (79) Krause, E.,Nobbe, P., Ibid., 63B, 934-42 (1930). (80) Ibid., 64B, 2112-6 (1931). (81) Krause, E., Polack, H., Ibid., 57B, 216-7 (1924) ; 59B, 777-85 (1926). (82) Ibid., 61B, 271-7 (1928). (83) Krause, E., Renwanz, G., Ibid., 65B, 777-84 (1932). (84) Kuivila, H . G., J. Am. Chem. Soc. 77, 4014-9 (1955). (85) Kuivila, H . G., et al., Ibid., 76, 870, 2675, 2679 (1954) ; 77, 4834-7 (1955). (86) Kuivila, H . G., Keough, A. H., Soboczenski, E . J., J. Org. Chem. 19, 780-3 (1954). (87) Laudbengayer, A. W., Ferguson, R. P., Newkirk, A. W., J. Am. Chem. Soc. 63, 559-61 (1941). (88) Letsinger, R. L., Northwestern Univ., private communication. (89) Letsinger, R. L., Skoog, I., J. Am. Chem. Soc. 76, 4174-6 (1954). (90) Ibid., 77, 2491-4 (1955). (91) Ibid., pp. 5176-7. (92) Letsinger, R. L., Skoog, I., J. Org. Chem. 18, 895 (1953). In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.

Downloaded by STANFORD UNIV GREEN LIBR on March 16, 2013 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch010

100 (93) (94) (95) (96) (97) (98) (99) (100) (101) (102) (103) (104) (105) (106) (107) (108) (109) (110) (111) (112) (113) (114) (115) (116) (117) (118) (119) (120) (121) (122) (123) (124) (125) (126) (127) (128) (129) (130) (131) (132) (133) (134) (135) (136) (137) (138) (139) (140) (141) (142) (143) (144) (145) (146) (147) (148) (149) (150) (151) (152) (153) (154) (155)

ADVANCES IN CHEMISTRY SERIES Levy, Η. Α., Brockway, L . O., J. Am. Chem. Soc. 59, 2085-92 (1937). Lincoln, Β. K., Byrkit, G. D., U. S. Patent 2,333,871 (1943). Long, L. H., Dollimore, D., J. Chem. Soc. 1953, 3902-10. Long, L. H., Norrish, R. G. W., Trans. Roy. Soc. (London) A241, 507-617 (1949). Lyle, R. E., Univ. New Hampshire, private communication. McCusker, P. Α., Glunz, L. J., J. Am. Chem. Soc. 77, 4253-5 (1955). Ibid.,pp. 5176-7. Martin, G. R., Can. Patent 466,183 (June 27, 1950). Meerwein,H.,Angew. Chem. A60, 78 (1948). Meerwein, H., Hinz, G., Majert, H., Sonke, H., J. prakt. Chem. 147, 226-50 (1936). Melnikov, Ν. N., J. Gen. Chem. (U.S.S.R.) (Eng. Transl.) 6, 636-9 (1936). Melnikov, N . N., Rokitskaya, M . S., Ibid.,8, 1768-75 (1938). Michaelis, Α., Ber. deut. chem. Ges. 15, 180-5 (1882). Ibid.,22, 241-3 (1889). Michaelis, Α., Becker, P., Ibid., 13, 58 (1880). Michaelis, Α., Brehrens, M., Rabinerson, J., Geisler, W., Ibid., 27, 244-626 (1894). Michaelis, Α., et al., Ann. Chem. Liebigs 312, 19-43 (1901). Nelson, J. F., Iowa State Coll. J. Sci. 12, 145-7 (1937). Nijimoto, E., Japan. Patent 1441 (1952). Osthoff, R. C., Ph.D. thesis, Harvard University, 1951. Pacs, E., Atti acad. nazl. Lincei 10, 193-6 (1929). Parsons, D. M., Ph.D. thesis, Univ. of Washington, 1953. Parsons, T. D., Ritter, D. M., J. Am. Chem. Soc. 76, 1710 (1954). Patterson, A. M., Chem. Eng. News 34, 560 (1956). Pickard, P. L., Patterson, M . K., Jr., Univ. Oklahoma, private communication. Razuvaev, G. Α., Brilkina, T. G., Doklady Akad. Nauk S.S.S.R. 85, 815-8 (1952) ; 91, 851-4 (1953). Rector, C. W., Schaeffer, G. W., Platt, J. R., J. Chem. Phys. 17, 460-5 (1949). Rice, Bernard, Barredo, J. M., Gonzales, Y . T. F., J. Am. Chem. Soc. 73, 2306-7 (1951) ; Anales real. soc. Españ. fís. y quím. (Madrid) 48B, 191-2 (1952). Rosen, R., U. S. Patent 2,234,581 (1941) ; 2,257,194 (1942). Rosenblum, L., J. Am. Chem. Soc. 77, 5016-7 (1955). Rothstein, E., Saville, R. W., J. Chem. Soc. (London) 1952, 2987-91. Ruthruff, R. F., U. S. Patent 2,247,821 (July 1, 1941). Safford, M. M., Ibid., 2,558,560 (1951). Safford, M. M., Hurd, D. T., Ibid.,2,558,561 (1951). Salzburg, P. L., Signaigo, F. K., Ibid.,2,467,603 (1948). Schlesinger, H . I., Brown, H . C., J. Am. Chem. Soc. 62, 3429-35 (1940). Schlesinger, H . I., Brown, H . C., et al., Ibid.,75, 222-4 (1953). Schlesinger, H . I., et al., Ibid., 75, 223, 837 (1955). Schlesinger, H . I., et al., Annual Repts. for Τ. Ο. 10, N60ri-20 (Aug. 1, 1954, to Aug. 1, 1955). Schlesinger, H . I., et al., Univ. Chicago, final rept. 1946-7. Ibid., 1947-8. Ibid.,1948-9. Ibid.,Progr. Rept., May 1953. Ibid.,Status Rept., February 1955. Ibid., Tech. Rept., February to April 1953. Schlesinger, H . I., Horvitz, L., Burg, A. B., J. Am. Chem. Soc. 58, 407-9 (1936). Schlesinger, H . I., Nestor, W. F., Burg, A. B., Ibid.,61, 1078-83 (1939). Schlesinger, H . I., Ritter, D. M., Burg, A. B., Ibid., 60, 1296-1300 (1938). Schlesinger, H . I., Sanderson, R. T., Burg, A. B., Ibid.,61, 536 (1939). Schlesinger, H . I., Walker, A. O., Ibid., 57, 621-5 (1935). Skinner, Η. Α., Tees, T. F. S., J. Chem. Soc. (London) 1953, 3378-83. Smith, J. E., Kraus, C. Α., J. Am. Chem. Soc. 73, 2751-4 (1951). Smith, R. K., U. S. Patent 2,422,503 (1947). Snyder, H . R., Kuck, J. Α., Johnson, J. R., J. Am. Chem. Soc. 60, 105 (1938). Stock, Α., Kuss, E., Ber. deut. chem. Ges. 56, 789 (1923). Stock, Α., Zeidler, F., Ibid.,54B, 531-41 (1921). Stone, F. G. Α., Emeleus, H . J., J. Chem. Soc. (London) 1950, 2755-9. Stout, L. E., Chamberlain, D. F., Washington Univ., WADC Tech. Rept. 52-192 A D No. 2149 (June 1952). Szmant, Η. H., Duquesne Univ., private communication. Tannebaum, S., Schaeffer, P. F., J. Am. Chem. Soc. 77, 1385-6 (1955). Thomson, T., Stevens, T. S., J. Chem. Soc. (London) 1933, 556. Urry, G., Kerrigan, J., Parsons, T. D., Schlesinger, H . I., J. Am. Chem. Soc. 76, 5259301 (1954). Urry, G., Wartik, T., Schlesinger, H . I., Ibid.,74, 5809 (1952). In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.

ADAMS-ORGANOBORON COMPOUNDS

Downloaded by STANFORD UNIV GREEN LIBR on March 16, 2013 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch010

(156) (157) (158) (159) (160) (161) (162) (163) (164) (165) (166) (167) (168) (169) (170) (171) (172) (173)

101

VanderWerf, C. Α., Univ. Kansas, private communication. Verhoek, F. H., Ohio State Univ. Research Found. MCC-1023-TR-152 (June 16, 1955). Wartik, T., private communication. Wartik, T., Schaeffer, G. W., ACS Meeting, Kansas City, Kan., April 1954. Wartik, T., Schlesinger, H . I., J. Am. Chem. Soc. 75, 835-9 (1953). Whatley, A. J., Pease, R. N., Ibid., 76, 835-8 (1954). Wiberg, E., et al., FIAT Rev. German Sci., 1939-46 ; Inorg. Chem., Pt. I 23, 226-38 (1948). Wiberg, E., Hertwig, Κ., Z. anorg. Chem. 225, 141-84 (1947). Ibid., 257, 138-44 (1948). Wiberg, E., Horeld, G., Z. Naturforsch. 6b, 338-9 (1951). Wiberg, E., Kruerke, V., Ibid., 8b, 608-9 (1953). Wiberg, E., Ruschmann, W., Ber. deut. chem. Ges. 70B, 1583-91 (1937). Wiberg, E., Tarbe, Κ., Z. anorg. Chem. 256, 307-17 (1948). Wiles, R. Α., J. Am. Chem. Soc. 77, 4830 (1955). Wittig, G., Ruckert, Α., Ann. Chem. Liebigs. 566, 101-13 (1950). Wittig, G., Raff, P., Z. Naturforsch. 6b, 225-6 (1951). Wittig, G., et al., Naturwissenschaften 34, 216 (1947) ; Ann. Chem. Liebigs 563, 110-26 (1949) ; 573, 195-209 (1951) ; 577, 26-9 (1952) ; 578, 136-46 (1952) ; Angew. Chem. 62A, 231-6 (1950). Yabroff, D. L., Branch, G. E. K., Bettman, B., J. Am. Chem. Soc. 56, 937-4, 1850-7,

(174) Yokubovich, A. Ya., Ginsburg, V. Α., Doklady Akad. Nauk S.S.S.R. 73, 957-9 (1950). RECEIVED for review May 10, 1957. Accepted June 1, 1957.

In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.