Radiation Chemistry


Radiation Chemistrypubs.acs.org/doi/pdf/10.1021/ba-1968-0081.ch026Similarmodified Pregl furnace followed by assay of the...

1 downloads 26 Views 1MB Size

26 The Radiation Chemistry of Anhydrous Solid State Glycine, Alanine, and Downloaded by UNIV OF TEXAS AT DALLAS on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch026

Glycine Salts 1

W. CARL GOTTSCHALL, JR. and BERT M. TOLBERT University of Colorado, Boulder, Colo. The radiation chemistry of glycine and alanine as well as the alkali metal salts of glycine has been investigated in the anhydrous solid state. Results of cesium-137 gamma irradiation indicate CO is the chief gaseous product with larger amounts of NH being released upon dissolution of the samples. Similarity of yields indicates little difference in decomposition mechanism and good agreement with the general mechanism postulated by Tolbert. G(CO ) values were glycine, 1.02; alanine, 0.89; sodium glycinate, 0.43; potassium glycinate, 0.54; rubidium glycinate, 0.91. Other products and their G values were for glycine G(H ) = 0.1; G(NH ) = 4.3, G(CH NH ) = 1; G ( - M ) = 6 and for alanine G(H ) = 0.5; G(NH ) = 3.3; G(CH CH NH ) = 2; G ( - M ) = 5. 2

3

2

2

3

3

2

2

3

3

2

2

TkyTuch w o r k has b e e n d o n e o n t h e i r r a d i a t i o n of a m i n o acids i n s o l u t i o n ™*

(8, 9, 10, 11, 16, 21) b u t little i n f o r m a t i o n c a n b e f o u n d o n s o l i d

state w o r k (1, 18)

despite the a d v a n t a g e

of a v o i d i n g i n d i r e c t effects.

E P R investigations of i r r a d i a t e d g l y c i n e (4, 6, 12, 22) a n d alanine

(17)

offer i n d e p e n d e n t results of a p h y s i c a l nature w h i c h correlate w i t h the c h e m i c a l results of this i n v e s t i g a t i o n .

T h e qualitative a n d quantitative

effects of a l k a l i m e t a l cations i n the c r y s t a l l i n e m a t r i x also are h e l p f u l i n d e t e r m i n i n g the m e c h a n i s m of i r r a d i a t i o n p r o d u c e d d e c o m p o s i t i o n . Experimental M a t e r i a l s . T h e best grade c o m m e r c i a l g l y c i n e a n d alanine f r o m t h e California Corporation for Biochemical Research were recrystallized 1

Present address: University of Denver, Denver, Colo. 80210. 374 Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

26.

GOTTSCHALL, JR. AND TOLBERT

Glycine, Alanine, and Glycine Salts 375

t w i c e — f i r s t f r o m g l a c i a l acetic a c i d a n d t h e n f r o m e t h y l a l c o h o l w a t e r . A n a l i q u o t of l a b e l e d a m i n o a c i d - l - C f r o m N u c l e a r C h i c a g o C o r p o r a t i o n ( c a l c u l a t e d to y i e l d a m i n o a c i d of specific a c t i v i t y s u c h that the a c i d or salts f o r m e d f r o m i t w o u l d h a v e a specific a c t i v i t y of a p p r o x i m a t e l y o n e t e n t h of a m i c r o c u r i e p e r m i l l i g r a m ) w a s p i p e t t e d i n t o t h e s o l u t i o n i m m e d i a t e l y p r i o r to the p r e p a r a t i o n s . T h e a m i n o acids w e r e t h e n p r e ­ c i p i t a t e d or salts p r e p a r e d b y a d d i n g the a p p r o p r i a t e a l k a l i m e t a l h y ­ d r o x i d e or carbonate a n d subsequent c r y s t a l l i z a t i o n . C r y s t a l s o b t a i n e d w e r e r e c r y s t a l l i z e d a n d d r i e d i n a v a c u u m desiccator over M g C 1 0 . Specific a c t i v i t y of each c o m p o u n d w a s c h e c k e d b y c o m b u s t i o n i n a m o d i f i e d P r e g l f u r n a c e f o l l o w e d b y assay of the C 0 with a Cary V i b r a t i n g Reed Electrometer. S o d i u m a n d p o t a s s i u m h y d r o x i d e s w e r e B a k e r A n a l y t i c a l Reagent. R u b i d i u m carbonate w a s F i s h e r Scientific C o m p a n y " p u r i f i e d . " Apparatus. T h e i r r a d i a t i o n s w e r e p e r f o r m e d i n the U n i v e r s i t y of C o l o r a d o cesium-137 g a m m a source at 2 2 ° C . T h e source w a s c a l i b r a t e d at 2.78 ± 0.02 X 1 0 e.v./gm./hr. b y a F r i c k e dosimeter at 2 2 ° C . u s i n g G ( F e ) = 15.6. M a s s Spectra w e r e r u n o n a C o n s o l i d a t e d E l e c t r o d y n a m i c s C o r p o r a ­ t i o n M a s s Sepectrometer T y p e 21-103C to d e t e r m i n e H y i e l d s as w e l l as y i e l d s f r o m " d r y " analyses f o r c o m p a r i s o n w i t h y i e l d s o b t a i n e d after d i s s o l u t i o n of the i r r a d i a t e d c o m p o u n d . S a m p l e tubes w e r e b r o k e n d i r e c t l y i n the gas s a m p l i n g system to y i e l d " d r y " analyses results. 1 4

4

Downloaded by UNIV OF TEXAS AT DALLAS on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch026

1 4

2

1 9

3 +

2

T h e gas c h r o m a t o g r a p h also u s e d to d e t e r m i n e " d r y " analysis y i e l d s was P e r k i n E l m e r F r a c t o m e t e r M o d e l 154. A s i m p l e d e v i c e w a s c o n ­ structed of T y g o n t u b i n g a n d brass connectors to p e r m i t breakage a g a i n of the i r r a d i a t e d capillaries d i r e c t l y i n t h e carrier stream. Procedure. C a p i l l a r y t u b i n g of 2 ± k m m . i n t e r n a l d i a m e t e r a n d a thickness of 200 ± 100 m i c r o m e t e r s w a s d r a w n o u t of b o r o s i l i c a t e glass t u b i n g . Segments of 10 ± 2 c m . l e n g t h w e r e sealed at one e n d a n d l a b e l e d . F u n n e l s of s i m i l a r t u b i n g w e r e u s e d to l o a d 15 ± 10 m g . of sample into each t u b e ; i n the case of h y g r o s c o p i c salts l o a d i n g w a s per­ f o r m e d i n a d r y b o x . Samples r e p o r t e d i n this p a p e r w e r e a l l e v a c u a t e d to 1 0 - 2 0 m i c r o n s of m e r c u r y b e f o r e b e i n g sealed. Samples sealed i n a i r w e r e o b s e r v e d to give h i g h e r d e c o m p o s i t i o n values. x

Samples w e r e i r r a d i a t e d at least i n d u p l i c a t e to t o t a l doses of 20, 40, 80, a n d 160 megarads. H o p e f u l l y to i m p r o v e consistency of data, a l l samples w e r e a l l o w e d to r e m a i n at least 2 days i n a —15 ° C . freezer f o r d i s s i p a t i o n of short l i v e d free r a d i c a l s b e f o r e analyses w e r e c o n d u c t e d . N o d a t a w a s o b t a i n e d o n r a d i c a l content at t i m e of analysis. T h e apparatus u s e d is s h o w n i n F i g u r e 1. T w e n t y m l . of IN N a O H was p l a c e d i n crusher t u b e " a " a n d t h e n a sample tube. T h e stopper w a s put i n p l a c e a n d the b u b b l e r t u b e " b " l o w e r e d to the b o t t o m of the crusher tube. N i t r o g e n gas w a s u s e d to p u r g e the s o l u t i o n a n d t h e n t h e sample t u b e w a s c r u s h e d u n d e r the N a O H w i t h c r u s h i n g r o d " c . " O x y g e n c o n t a i n i n g 5 % C 0 w a s s w e p t t h r o u g h the s o l u t i o n f o r several m i n u t e s and then into a n e v a c u a t e d i o n i z a t i o n c h a m b e r . T e n m l . of 3 5 % per­ c h l o r i c a c i d w a s a d d e d d r o p w i s e to the a l k a l i n e s o l u t i o n f r o m t h e d r o p ­ p i n g f u n n e l "e." C 0 released w a s swept a l o n g w i t h t h e 0 - C 0 gas i n t o the i o n i z a t i o n c h a m b e r . A f t e r the c h a m b e r r e a c h e d a t m o s p h e r i c 2

1 4

2

2

Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

2

376

RADIATION CHEMISTRY

1

pressure, the v a l v e w a s c l o s e d a n d the voltage generated i n the i o n i z a t i o n chamber was measured w i t h a C a r y V i b r a t i n g Reed Electrometer (14). T h e C o n w a y m i c r o d i f f u s i o n m e t h o d (2) w a s e m p l o y e d to d e t e r m i n e the amounts of a m m o n i a a n d amines r e s u l t i n g f r o m i r r a d i a t i o n of d u p l i ­ cate samples a n d subsequent d i s s o l u t i o n i n 0 . 0 0 6 N H S 0 . T h e R u s s e l l p r o c e d u r e (15) f o r a q u a n t i t a t i v e c o l o r i m e t r i c d e t e r m i n a t i o n w a s e m ­ p l o y e d w i t h the readings m a d e at 628 m/x o n a B e c k m a n Spectro­ photometer.

Downloaded by UNIV OF TEXAS AT DALLAS on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch026

2

To Sweep Gas

4

*- To aspirator

To ionization chamber

Figure

1.

Generation apparatus analyses

for C0

2

"wet"

(a)—thickwall crushing tube, (b)—bubbler tube, (c) —crushing rod, (d,f)—3-way valve, (e)—dropping funnel, (g)—gas flow indicator apparatus, and ( h ) — pressure regulator H i g h v o l t a g e electrophoresis at 50 v o l t s / c m . has b e e n s h o w n to separate amines a n d a m m o n i a f r o m their parent a m i n o a c i d (13) a n d was e m p l o y e d to p e r m i t c o l o r i m e t r i c d e t e r m i n a t i o n of a m m o n i a a n d the amines. T h e excess of a m m o n i a o b s e r v e d i n every case c o u p l e d w i t h factors of 10 a n d 100 h i g h e r sensitivity f o r a m m o n i a t h a n m e t h y l a m i n e or e t h y l a m i n e r e s p e c t i v e l y i n the p r o c e d u r e indicates that t h e m i c r o d i f f u s i o n results G ( N H + a m i n e s ) to a g o o d a p p r o x i m a t i o n are also the G ( N H ) values. G ( — M ) values w e r e d e t e r m i n e d b y isotopic d i l u t i o n u s i n g a m i n o acids r e c r y s t a l l i z e d as above, as w e l l as w i t h a n a u t o m a t i c a m i n o a c i d analyzer. ; i

3

Results F i g u r e 2 shows the m o l e % of the o r i g i n a l c o m p o u n d f o r C 0 a n d 2

NH

3

p r o d u c e d f r o m d u p l i c a t e radiolyses of g l y c i n e as a f u n c t i o n of dose.

Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

Downloaded by UNIV OF TEXAS AT DALLAS on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch026

26.

GOTTSCHALL, JR. AND TOLBERT

Figure 2.

377

Glycine, Alanine, and Glycine Salts

Yields of C0 irradiated 2

and NH glycine

3

for i n vacuo

F i g u r e 3 is the same p l o t for alanine. T h e curves are a l l i n i t i a l l y l i n e a r and

the G values w e r e c a l c u l a t e d f r o m this i n i t i a l l i n e a r p o r t i o n . L o w

d e v i a t i o n s o n the a m m o n i a curves at the highest a b s o r b e d dose

may

reflect h i g h d e c o m p o s i t i o n of o r i g i n a l a m i n o a c i d .

with

A m i n o acids

h i g h e r specific activities w e r e u s e d to d e t e r m i n e G ( C 0 ) 2

at l o w e r ab­

s o r b e d doses. T h e s e values are s i g n i f i c a n t l y l o w e r as s h o w n i n F i g u r e 4. T h e p r o b l e m of i m p u r i t y i n t r o d u c e d b y the r a d i a t i o n d e c o m p o s i t i o n of the o r i g i n a l m a t e r i a l a n d its effect o n m e a s u r e d G values confronts a l l w o r k e r s i n this area. F o r consistency a n d since these values h a v e a m u c h m o r e r e l i a b l e a n a l y t i c a l basis, the h i g h dose values w i l l b e u s e d t h r o u g h ­ out.

T h e results of interest are the r e l a t i v e G values i n any case since

absolute values are a c k n o w l e d g e d to d e p e n d o n dose. It s h o u l d b e stressed that the G ( H ) values i n this p a p e r arise f r o m 2

"dry"

analyses of the gases released f r o m the s o l i d w h i l e the other repre­

sent " w e t " analyses of p r o d u c t released u p o n d i s s o l u t i o n . " D r y " results gave C 0

2

i n the largest y i e l d t h o u g h this c o r r e s p o n d e d to a G ( C 0 )

Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

2

of

378

RADIATION CHEMISTRY

1

o n l y 0.2 ±

0.1. W h e n the mass spectral " d r y " d a t a are n o r m a l i z e d to

G(C0 )

1 the G ( H ) v a l u e agrees a p p r o x i m a t e l y w i t h Bregers a n d

=

2

2

C O , C H , H 0 are also i n d i c a t e d as i n R e f e r e n c e 1 b u t i n less t h a n 1 0 % 4

of the C 0

2

2

yield.

T h e N H results f r o m this " d r y " study, h o w e v e r , are 3

c o n s i d e r a b l y l o w e r w i t h G ( N H ) ^ 0.01. D e s p i t e t h e large uncertainties 3

it c a n b e c o n c l u d e d that extensive t r a p p i n g of gaseous p r o d u c t s a n d or unstable p r o d u c t s i n c h e m i c a l forms w h i c h c o u l d i n c l u d e r a d i c a l s , i m i n e s , H C O - f , etc., exist.

T h e s e p r o d u c t s s u b s e q u e n t l y react w h e n d i s s o l v e d

Downloaded by UNIV OF TEXAS AT DALLAS on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch026

i n w a t e r , to give the gaseous p r o d u c t s . T h e m a g n i t u d e of t h e q u a n t i t a ­ t i v e uncertainties

p r e c l u d e s a r a t i o n a l c o m p a r i s o n of a n y significance

b a s e d o n these n u m b e r s a n d h e n c e t h e y w i l l n o t b e discussed. " D r y " h y d r o g e n y i e l d s w e r e , h o w e v e r , assumed to b e q u a n t i t a t i v e . ALANINE

3.0

X *NH

3

o =C0

2

X

2.5

/

^

x

2.0

1.5

1.0 -

0.5

-

/ x/ /X

J1 2

Figure 3.

x

1I 4 ENERGY

I 6 INPUT, -21 ev/gm, x 10

Yields of C0 irradiated

2

i L 8

and NH for i n vacuo alanine 3

Q u a n t i t a t i v e results f o r acetic a n d p r o p i o n i c acids a n d the a p p r o ­ p r i a t e a keto acids w e r e n o t o b t a i n e d i n this study, b u t their presence w a s q u a l i t a t i v e l y i n d i c a t e d a n d m a t e r i a l b a l a n c e w a s u s e d to a p p r o x i m a t e their G v a l u e s u m as 5 f o r g l y c i n e a n d 4 f o r alanine.

Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

Downloaded by UNIV OF TEXAS AT DALLAS on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch026

26.

GOTTSCHALL, JR. AND TOLBERT

Glycine, Alanine,

Yields of C0 for i n vacuo glycine and alanine

Figure 4.

2

and Glycine Salts 379

irradiated

X—Alanine, G(COz) — 0.63 O—Glycine, G(CQ ) = 0.75 2

Table I.

Decomposition Products and G Values for In Vacuo Irradiated Glycine and Alanine Glycine Solid n

2

2

2

Aqueous a

y G(-M) G(H ) G(C0 ) G(NH,) G(RNH ) G ( S acids)

Alanine

-6 0.1 1.02 4.3 1 5





0.3 1 0.2

2.0 0.90 4.0 0.19 3.6

— —

e

a

Solid

Aqueous

d

— — —

1.7 0.24



-5 0.5 0.89 3.3 2 4 r

— l.i 0.59 4.5 0.17 3.0

This work. Ref. 1 normalized to G ( C 0 ) = 1. Breger reported values as Volume% with C0 = 55.8%. Ref. 8 Ref. 10. Ref. 16. Numbers deduced from material balance requirement. a

&

2

c

d

6

1

Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

2

380

RADIATION CHEMISTRY

1

A c o m p i l a t i o n of t h e results f r o m this s t u d y f o r the various p r o d u c t s of g l y c i n e a n d alanine g a m m a i r r a d i a t e d in vacuo are listed i n T a b l e I, a l o n g w i t h c o r r e s p o n d i n g a i r r a d i a t e d g l y c i n e values a n d aqueous solu­ t i o n y i e l d s as i n d i c a t e d . It is w o r t h n o t i n g that t h e a i r r a d i a t e d g l y c i n e values t a b u l a t e d result f r o m c o n v e r s i o n of Bregers r e p o r t e d v o l u m e % values a n d n o r m a l i z a t i o n to a G ( C 0 ) 2

v a l u e of 1. T h i s data of course

does n o t i n c l u d e gaseous p r o d u c t s t r a p p e d , a d s o r b e d , or r e s u l t i n g f r o m

Downloaded by UNIV OF TEXAS AT DALLAS on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch026

d i s s o l u t i o n of other species.

2.1

2

Figure 5.

4 6 ENERGY INPUT, ety/gm, x 10

8

Yields of CO for i n vacuo irradiated glycine salts £

• —rubidium glycinate O—potassium glycinate A—sodium glycinate

F i g u r e V shows t h e amounts of C 0 p r o d u c e d f r o m the a l k a l i m e t a l salts as a f u n c t i o n of dose. G ( C 0 ) values o b t a i n e d f o r these g l y c i n e salts a n d c o r r e c t e d f o r electron density are s o d i u m glycinate, 0.43; potas­ s i u m glycinate, 0.54; a n d r u b i d i u m g l y c i n a t e , 0.91. 2

2

Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

26.

GOTTSCHALL, JR. AND TOLBERT

381

Glycine, Alanine, and Glycine Salts

Discussion A q u e o u s w o r k (8, 9,10,

has p e r m i t t e d d e d u c t i o n of p r i n ­

11, 16, 21)

c i p a l s t o i c h i o m e t r i c relationships as w e l l as a satisfactory r e a c t i o n q u e n c e for in vacuo

i r r a d i a t e d a m i n o acids.

se­

C o m p a r i s o n of the results

f r o m aqueous a n d s o l i d state r a d i a t i o n c h e m i s t r y is not a s t r a i g h t f o r w a r d matter to be a n t i c i p a t e d a priori, h o w e v e r , since i n the aqueous w o r k o n l y a m i n e a n d c a r b o n d i o x i d e w e r e p o s t u l a t e d to result f r o m d i r e c t a c t i o n whereas N H , H , acids, a n d a d d i t i o n a l C 0 3

2

w e r e p r o d u c t s of secondary

2

reactions i n v o l v i n g aqueous species H ° , O H ° , a n d H 0 .

Downloaded by UNIV OF TEXAS AT DALLAS on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch026

2

It m i g h t b e

2

p o i n t e d out that effects o b s e r v e d i n this s t u d y m u s t represent a c o m b i n a ­ t i o n of r a d i c a l degradations a n d p u r e d i r e c t r a d i a t i o n c h e m i s t r y effects. M o s t s o l i d a m i n o acids saturate w i t h free r a d i c a l s at doses of ^ (7)

10

whereas the results d i s c u s s e d result f r o m doses of 1 0 - 1 0 7

Garrison (3)

8

6

rads rads.

m o d i f i e d M a x w e l l ' s earlier scheme to i n c l u d e reactions of

the h y d r a t e d electron; the reactions of a n electron also c a n take p l a c e i n the s o l i d state. A s is seen f r o m T a b l e I, g a m m a y i e l d s of N H i n the 3

s o l i d state are i n f a i r agreement w i t h aqueous values. A s earlier n o t e d , the s o l i d state N H

3

values result f r o m " w e t " analyses a n d h e n c e one

c o n c l u d e s that regardless of p a t h w a y a n d p o s s i b l y d i f f e r i n g w a t e r u n s t a b l e intermediates the final d e c o m p o s i t i o n results are s u r p r i s i n g l y close.

Pre­

cautions w e r e not t a k e n to e x c l u d e o x y g e n f r o m the " w e t " analyses a n d the d a t a of M a x w e l l et al. o b t a i n e d b y i r r a d i a t i o n of o x y g e n saturated aqueous solutions (10)

gave a G ( N H ) of 4.3 also. T h e C 0 3

y i e l d s are

2

seen to be s i m i l a r t h o u g h a m i n e y i e l d s differ significantly. Since a m i n e y i e l d s in aquo are extremely s m a l l , the r e l a t i v e i m p o r t a n c e of p r i m a r y effects, reflected b y this y i e l d , vs. secondary effects is o b v i o u s . T h e f o l l o w i n g m e c h a n i s t i c scheme is therefore p r o p o s e d b a s e d u p o n the ideas suggested b y G a r r i s o n ( 3 ) , Tolbert (19)

modified and supplemented

by

to e x p l a i n s o l i d state c o m p l e x i t i e s a n d consistent w i t h the

concepts i n t r o d u c e d b y S i n c l a i r a n d H a n n a RCHN H C0 — +

3

2

_

M M

M

M

(17).

— > ( R C H N H C 0 ) ° + e~ +

(I)

R C N H C 0 - + H°

(2)

+



+

>

3

3

2

2

fast (RCHN H C0 ) +

3

2

-> R C H N H

0 +

+

e~ + R C H N H C 0 - ~> N H 3

2

3

2

+ C0

(2)

2

+ RCHCOo"

3

H° + R C H N H C 0 - -> N H

3

4

+

(3a)

+ RCHC0 "

(3b)

2

-> H + R C N H C 0 " 2

RCHN H +

3

+

3

2

+ RCHN H C0 " -» RCH N H 3

2

2

+

3

+ RCN H C0 " +

3

2

Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

(4)

382

RADIATION CHEMISTRY

R C H C 0 - + R C H N H C 0 " -> R C H C 0 ' + R C N H C 0 " +

2

8

2

2

+

2

3

2

1

(5)

plus r a d i c a l c o m b i n a t i o n a n d d i s p r o p o r t i o n a t i o n reactions. Without

i n c l u s i o n of r a d i c a l c o m b i n a t i o n

a n d disproportionation

reactions m a t e r i a l b a l a n c e c a n n o t b e e m p l o y e d to v e r i f y or p r e d i c t G values.

Occurrence

of r a d i c a l reactions

to regenerate a m i n o acids is

c l e a r l y i m p l i e d , f o r example, since G ( — M ) d e t e r m i n e d =

—6 f o r g l y c i n e

w h i l e s u m m i n g a p p r o p r i a t e p r e c e d i n g reactions w o u l d l e a d to a v a l u e of Downloaded by UNIV OF TEXAS AT DALLAS on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch026

— 14.1.

A v a i l a b l e d a t a u n f o r t u n a t e l y cannot present a c o m p l e t e p i c t u r e

b u t this g o a l must a w a i t f u t u r e results. It has come to the authors' attention that d a t a c i t e d b y M a x w e l l i n d i c a t e that R e a c t i o n 5 does n o t o c c u r i n aqueous s o l u t i o n . D i s ­

(11)

p r o p o r t i o n a t i o n reactions NHXHCOOH + CH COOH -» NHCHCOOH + CH COOH

(6)

2 N H C H C O O H -> N H C H C O O H + N H C H C O O H

(7)

2

3

and 2

have b e e n

2

suggested

2

instead b u t these results m a y n o t d i s p r o v e t h e

p o s s i b i l i t y of R e a c t i o n 5 i n t h e s o l i d state. T h e results f o r the a l k a l i m e t a l salts f u r t h e r i n d i c a t e s i m i l a r i t y i n p r i n c i p a l d e c o m p o s i t i o n m e c h a n i s m s f o r these examples. of course d o n o t p r o v e the m e c h a n i s m .

T h e s e results

Note, however, the trend i n the

a l k a l i m e t a l salts t o w a r d greater d e c o m p o s i t i o n d e s c e n d i n g t h e p e r i o d i c column.

T h i s t r e n d corresponds to a m e t a l l i c i o n decrease i n electro­

n e g a t i v i t y or charge density a n d suggests a c o r r e l a t i o n b e t w e e n r a d i a t i o n s t a b i l i t y a n d electron d e n s i t y o n t h e o x y g e n a t o m .

Such a correlation

a n d r e l a t i o n s h i p to t h e o r y of t h e p r i m a r y r a d i a t i o n event i n s o l i d state i r r a d i a t i o n s has b e e n treated i n a p r e v i o u s article ( 5 ) . T h e l o w e r G ( C 0 ) values at v e r y l o w r a d i a t i o n levels ( F i g u r e s 2, 3, 2

a n d 4 ) are difficult to e x p l a i n . D e c a r b o x y l a t i o n b y r a d i c a l - r a d i c a l reac­ tions suggested b y c o m p a r i s o n w i t h saturation of E P R signals is a possi­ bility.

R e c e n t w o r k b y T o l b e r t a n d K r i n k s (20)

on the decarboxylation

of p h e n y l a l a n i n e in vacuo a n d i n H S shows n o change i n G values a n d 2

does n o t i n d i c a t e s u c h a m e c h a n i s m . higher G ( C 0 ) 2

A n o t h e r possible e x p l a n a t i o n f o r

values at h i g h e r doses is r a d i a t i o n d e c a r b o x y l a t i o n of

i n t e r m e d i a t e species p r o d u c e d b y the r a d i a t i o n d e c o m p o s i t i o n process. Acknowledgments W . C a r l G o t t s c h a l l , Jr. w o u l d l i k e to a c k n o w l e d g e s u p p o r t f r o m a U n i v e r s i t y of C o l o r a d o F e l l o w s h i p , a D u P o n t T e a c h i n g F e l l o w s h i p , a n d a n N I H P r e d o c t o r a l F e l l o w s h i p i n successive years d u r i n g w h i c h t h e research w a s p e r f o r m e d .

Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

26.

GOTTSCHALL, JR. AND TOLBERT

Glycine, Alanine, and Glycine Salts 383

Downloaded by UNIV OF TEXAS AT DALLAS on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch026

Literature Cited (1) Breger, I. Α.,J.Phys.Chem. 52, 551 (1948). (2) Conway, E., "Microdiffusion Analysis and Volumetric Error," Crosby Lockwood and Son, Ltd., London, 1957. (3) Garrison, W. M., Radiation Res. Suppl. 4, 158 (1964). (4) Ghosh, D. K., Whiffen, D. H., Mol. Phys. 2, 285 (1959). (5) Gottschall, W.C.,Tolbert, Β. M., J. Phys. Chem. 72, 922 (1968). (6) Henricksen, T., Radiation Res. 17, 158 (1963). (7) Kohnlein, W., Muller, Α., Phys. Med. Biol. 6, 599 (1962). (8) Maxwell, C. R., Peterson, D. C., Sharpless, Ν. E., Radiation Res. 1, 530 (1954). (9) Maxwell, C. R., Peterson, D. C., White, W. C., Radiation Res. 2, 431 (1955). (10) Maxwell, C. R., Peterson, D.C.,J.Phys. Chem. 36, 935 (1959). (11) Maxwell, C. R., Radiation Res. Suppl. 4, 175( 1964). (12) Patten, F., Gordy, W., Radiation Res. 14, 573 (1961). (13) Rajewsky, V., Dose, Κ., Z. Naturforsch. 12b, 384 (1957). (14) Rossi, B., Staub, H., "Ionization Chambers and Counters," McGraw-Hill, New York, 1949. (15) Russell, J., J. Biol. Chem. 156, 457 (1945). (16) Sharpless, Ν. E., Blair, Α., Maxwell, C. R., Radiation Res. 2, 135 (1955). (17) Sinclair, J. W., Hanna, M. W.,J.Phys. Chem. 71, 84 (1967). (18) Tolbert, B. M., Lemmon, R. L., Radiation Res. 3, 52 (1955). (19) Tolbert, Β. M., Proc. Symp. Prep. Storage Marked Molecules (1st), J. Sirchis, ed., Brussels, 1964. (20) Tolbert, B. M., Krinks, M. H., Tech. Progr. Rept., At. Energy Comm. AT(11-1)-690, October 14, 1967. (21) Weeks, Β. M., Garrison, W. M., Radiation Res. 9, 291 (1958). (22) Weiner, R. F., Koski, W. S.,J.Am. Chem. Soc. 85, 873 (1963). RECEIVED January 2, 1968. This work was supported in part by contract U. S. Atomic Energy Commission, Contract No. AT(11-1)-690.

Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.