Radiation Chemistry


Radiation Chemistrypubs.acs.org/doi/pdf/10.1021/ba-1968-0081.ch021MBH, 2 +. (in 0.1N H 2 S 0 4 ) and M B H , 3 +. (in co...

0 downloads 137 Views 1MB Size

21 The Application of Pulse Radiolysis to the

Downloaded by NANYANG TECHNOLOGICAL UNIV on June 21, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch021

Radiation Chemistry of Organic Dyes LEONARD

I. G R O S S W E I N E R

Physics Department, Illinois Institute of Technology and Department of Radiation Therapy, M i c h a e l Reese Hospital and M e d i c a l Center, Chicago, Ill.

Pulse radiolysis studies have shown that many organic dyes are highly reactive toward the products of water radiolysis. -

Dyes with quinonoid structures are reduced by e aq to the semiquinone in encounter-limited reactions. Hydroxyl radi­ cals react by oxidation and addition processes. In general, reductive bleaching takes place via semiquinone dismutation, while oxidative decoloration is a complex process involving several O H radicals. The complexing of dyes to high molecular weight substrates leads to a marked change of

e-aq

reactivity.

Some oxidized dye intermediates and

triplet states react with e-aq in chemiluminescent processes.

>Tphe r a d i a t i o n c h e m i s t r y of o r g a n i c dyes has b e e n s t u d i e d f o r almost A

40 years.

I n early w o r k t h e emphasis w a s o n t h e c o l o r changes i n ­

d u c e d b y i r r a d i a t i o n , m o t i v a t e d i n p a r t b y the p o s s i b i l i t y that d y e s o l u ­ tions m i g h t serve as c o n v e n i e n t dosimeters

( 2 5 ) . A l t h o u g h dyes are

g e n e r a l l y m o r e c o m p l e x t h a n the other o r g a n i c m o l e c u l e s w h o s e r a d i a t i o n c h e m i s t r y h a s b e e n s t u d i e d i n d e t a i l , specific reasons c a n b e c i t e d f o r interest i n this subject.

F r o m t h e v i e w p o i n t of r a d i a t i o n b i o l o g y , dyes

c a n a c t as w e l l - d e f i n e d m o d e l s o f b i o l o g i c a l r e d o x systems.

T h i s aspect

is p a r t i c u l a r l y p e r t i n e n t i n c o n n e c t i o n w i t h recent w o r k o n the r a d i o l y s i s of dyes c o m p l e x e d t o h i g h m o l e c u l a r w e i g h t substrates.

I n addition, the

strong v i s i b l e c o l o r a t i o n of d y e d e r i v a t i v e s facilitates t h e i d e n t i f i c a t i o n of the transient a n d p e r m a n e n t r e a c t i o n p r o d u c t s , w h i c h offsets t o some extent t h e m u l t i p l i c i t y of possible reactions.

S o m e of t h e intermediates

f o r m e d i n r a d i o l y s i s are p h o t o c h e m i c a l p r o d u c t s also, w h i c h has assisted c o n s i d e r a b l y i n e l u c i d a t i n g r e a c t i o n m e c h a n i s m s i n b o t h cases.

Despite

the p o t e n t i a l a p p l i c a t i o n s of p u l s e r a d i o l y s i s t o this subject, t h e a c t u a l a m o u n t of w o r k r e p o r t e d since 1962 has n o t b e e n large.

T h e current

309 Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

310

RADIATION CHEMISTRY

1

status of the field appears to p a r a l l e l d y e p h o t o c h e m i s t r y at a p p r o x i m a t e l y a d e c a d e ago, w h e n flash p h o t o l y t i c methods w e r e i n t r o d u c e d to c o m ­ p l e m e n t the u s u a l p r o c e d u r e s of c o n t i n u o u s i r r a d i a t i o n a n d product characterization.

permanent

T h u s , the emphasis i n the pulse r a d i o l y s i s ap­

p r o a c h has b e e n o n i d e n t i f y i n g the transient species f o r m e d w h e n the d y e reacts w i t h the p r o d u c t s of w a t e r r a d i o l y s i s a n d m e a s u r i n g t h e i r f o r m a t i o n a n d d e c a y rate constants.

T y p i c a l l y , these intermediates

can

Downloaded by NANYANG TECHNOLOGICAL UNIV on June 21, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch021

result f r o m b o t h o x i d a t i o n a n d r e d u c t i o n processes, a n d they m a y exist i n m o r e t h a n one i o n i c state w i t h different spectra a n d reactivities. t i v e l y c o m p l e t e investigations h a v e b e e n a t t e m p t e d o n l y for tives of the thiazines a n d xanthenes.

Rela­

representa­

I n a d d i t i o n to o p t i c a l a b s o r p t i o n

spectra, n e w i n f o r m a t i o n o n c h e m i l u m i n e s c e n t reactions of dyes has b e e n o b t a i n e d b y electron p u l s e - i n d u c e d emission measurements.

This paper

comprises a s u m m a r y of recent w o r k , i n c l u d i n g a b r i e f d i s c u s s i o n of p e r t i n e n t steady i r r a d i a t i o n G values. Research Results Pulse Radiolysis of Aqueous Methylene Blue. T h e first p u l s e r a d i o l y ­ sis s t u d y of a n o r g a n i c d y e w a s c a r r i e d out o n the t h i a z i n e d y e , m e t h y l e n e b l u e (3,

C o n s i d e r a b l e emphasis was g i v e n to the different i o n i c

12).

states of the d y e , r e f e r r e d to as M B H

2

(pK

3 +

a

=

-5.1), M B H

(pK.

2 +

=

0.0), a n d M B . T h e transient spectra o b t a i n e d b y i r r a d i a t i n g n e u t r a l a n d +

a l k a l i n e solutions w i t h 2-fxsec. pulses of 4 M e v . electrons i n the presence of f o r m a t e s h o w e d that the d y e is b l e a c h e d via a two-step process, w i t h a c o n c u r r e n t a b s o r p t i o n increase p e a k i n g at 420 m/x. T h e

intermediate,

d e s i g n a t e d as M B - corresponds w i t h the m e t h y l e n e b l u e

semiquinone

first i d e n t i f i e d b y flash p h o t o l y s i s i n the presence of r e d u c i n g agents T h e faster step w a s a t t r i b u t e d to the r e d u c t i o n of M B

15, 17).

b y c o m p a r i n g its rate w i t h the d e c a y of e\

q

+

(11,

by

e'

m

at 720 m/x, a n d the slower

step was a t t r i b u t e d to r e d u c t i o n b y C 0 ~ r e s u l t i n g f r o m the s c a v e n g i n g 2

of O H b y formate.

T h e s e m i q u i n o n e disappears b y a second-order p r o c ­

ess a c c o m p a n i e d b y a p a r t i a l r e t u r n of the d y e , w h i c h was e x p l a i n e d b y d i s p r o p o r t i o n a t i o n l e a d i n g to e q u a l parts of M B MBH.

The

methylene

K e e n e et at

(12)

blue semiquinone

2 +

( i n 0.1N

p r o t o n a t i o n states assigned

differ f r o m the results of M a t s u m o t o ( 1 5 ) ,

p o s e d the f o l l o w i n g f o u r states: M B MBH,

a n d the l e u c o base,

+

T h e rate constants are s u m m a r i z e d i n T a b l e I.

H S0 ) 2

4

and M B H ,

3 +

• (pH >

9), M B H

( i n cone. H S 0 ) . 2

4

+

by

who pro­ (pH

3-8),

R e c e n t meas­

urements b y J. F a u r e , R. B o n n e a u , a n d J. J o u s s o t - D u b i e n [/. Chim.

Phys.

6 5, 369 (1968) ] o n the effect of the i o n i c strength o n the d i s m u t a t i o n rate constant

s u p p o r t the c o n c l u s i o n of M a t s u m o t o that the n e u t r a l s e m i ­

q u i n o n e M B - is stable o n l y above p H 9.

Keene, L a n d , and Swallow

Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

21.

GROSSWEINER

[J.

Chim.

Organic 65, 371

Phys.

311

Dyes

( 1 9 6 8 ) ] n o w agree w i t h the assignments

gested b y M a t s u m o t a a n d F a u r e et al.

a n d i n d i c a t e that the

sug­

reaction

m e c h a n i s m s g i v e n i n Ref. 12 ( w h i c h are s u m m a r i z e d i n T a b l e I )

must

be m o d i f i e d a c c o r d i n g l y . Table I.

Pulse Radiolysis Rate Constants for Methylene Blue

Reaction ' 0

+ MB

e~ Downloaded by NANYANG TECHNOLOGICAL UNIV on June 21, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch021

m

pH

6

MB-

+

7.8

C0 " + MB -» MB• + C 0 +

2

COOH- + M B -» MBH +

COOH- + M B H COOH- + M B H H

+ C0

9

3 +

-» MBH

2

2

+ H

+

0

— -0.8

9

—2 X 1 0 -TO

d

+

2 +

—7 X 10

2 MB- + H 0 -» M B H + MB + OH"

7.8

3.0 X 10

2 MBH -» MBH + MBH Data from Keene, Land, and Swallow (12). Ionic states of methylene blue M B , M B H , M B H M B - , M B H , M B H ; leuco base: M B H . M B H , M B H ; leuco base: M B H . Units of liters/mole-sec. *H .

0.8"

2 +

2

+

9

9

— -5.7*

+

(10%)

10

5.6 X 1 0 ' ( 1 0 % )

1.8

2

+ C0

+

Constant

2.5 X 1 0

7.8

2

+ C0

+

-> M B H

2 +

Rate

2 +

8

(10%)

9

—1.6 X 10

9

a

b

+

+

+

2

2

2 +

2

3 +

, ionic states of the semiquinone:

2 +

2 +

c

0

T h e p u l s e r a d i o l y s i s of M B w i t h o u t f o r m a t e l e d to t h e M B • absorp­ +

t i o n p l u s another transient p e a k i n g at 520 m^t.

T h e latter

corresponds

w i t h the s p e c t r u m of s e m i o x i d i z e d d y e o b t a i n e d b y flash p h o t o l y s i s 15)

(II,

a n d w a s a t t r i b u t e d to the attack of O H . H o w e v e r , t h e a d d i t i o n of

O H to the d y e w a s not r u l e d out.

N o e v i d e n c e w a s f o u n d for t r i p l e t

f o r m a t i o n . T h e spectral changes o b t a i n e d i n m o r e a c i d i c solutions w i t h formate

s h o w that

d e s i g n a t e d as M B H

the 2

2 +

semiquinone

(pK

ffl



-3)

occurs

i n two protonated

and M B H

(pK

+

ffi

— 2).

states

It w a s sug­

gested that the first p r o t o n is a t t a c h e d to the c e n t r a l r i n g n i t r o g e n a t o m a n d the second p r o t o n adds to the — N ( C H ) 3

group. T h e approximate

2

f o r m a t i o n a n d d e c a y rate constants are g i v e n i n T a b l e I. Pulse Radiolysis of Aqueous Fluorescein Dyes. T h e xanthene of the

fluorescein

electrons fluorescein

(4,

dyes

t y p e w e r e i n v e s t i g a t e d u s i n g 1-jusec. pulses of 30 M e v .

5, 8).

The

transient

spectra

obtained

with

deaerated

solutions s h o w three characteristic sets of b a n d s . A p r o m i n e n t

p e a k that shifts f r o m 355 m/* i n n e u t r a l solutions to 395 m/x i n a l k a l i n e solutions corresponds w i t h the s e m i q u i n o n e m o n o a n i o n (13).

T h i s b a n d is q u e n c h e d b y e~

m

(pK

a

=

9-5)

scavengers, s u c h as o x y g e n or H 0 , 2

a n d w a s a t t r i b u t e d to r e d u c t i o n of the d y e b y e\ . q

2

A b a n d at 4 1 5 - 4 2 0 m/x

w h i c h does not c h a n g e w i t h p H w a s i d e n t i f i e d w i t h the s e m i o x i d i z e d r a d i c a l m o n o a n i o n , a p h e n o x y l d e r i v a t i v e first o b s e r v e d i n flash p h o t o l y s i s also ( 1 3 ) .

T h i s b a n d is q u e n c h e d b y f o r m a t e a n d w a s a t t r i b u t e d to the

o x i d a t i v e attack of O H . T h e r e m a i n i n g transient consists of a diffuse

Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

312

RADIATION CHEMISTRY

a b s o r p t i o n to l o n g w a v e l e n g t h s of the

fluorescein

1

d i a n i o n b a n d (491 m/x)

a n d was d e s i g n a t e d as the " r e d p r o d u c t . " It was d i s t i n g u i s h e d f r o m the other t w o species b y its c o n s i d e r a b l y l o n g e r l i f e t i m e a n d

first-order

decay.

T h e " r e d p r o d u c t " has at least t w o constituents w i t h different b u i l d u p a n d d e c a y rates. It is q u e n c h e d e n t i r e l y b y H a n d O H scavengers

such

as f o r m a t e or e t h y l a l c o h o l , w h i l e o n l y one c o m p o n e n t w a s o b s e r v e d i n air-saturated solutions. T h e l o n g e r - l i v e d constituent w a s i d e n t i f i e d w i t h Downloaded by NANYANG TECHNOLOGICAL UNIV on June 21, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch021

O H a d d u c t s of the xanthene r i n g system, a n d the secondary w e r e assumed to be H - a t o m adducts. quinone ( R )

and semioxidized dye ( X )

10.7 are G ( R ) =

3.3 ±

components

T h e i n i t i a l y i e l d s of the

0.3 a n d G ( X ) =

i n deaerated 1.4 ±

0.2

semi­

solutions at p H

(5).

T h e results o b t a i n e d w i t h the eosin d i a n i o n are s i m i l a r to

fluorescein.

I n this case, the R absorptions at 369 m/x ( m o n o a n i o n ) a n d 405 m/x ( d i ­ a n i o n ) agree exactly w i t h the flash photolysis assignments

10,

16),

w h i l e the X m o n o a n i o n b a n d at 450 m/x is reasonably close to the

flash

photolysis spectra r e p o r t e d at 462

(10)

(7,

a n d 456 m/x (16).

The

eosin

O H a d d u c t m a x i m u m is l o c a t e d near 600 m/x c o m p a r e d w i t h 570 ± 20 m/x for

fluorescein

and G ( X ) =

T h e i n i t i a l y i e l d s at p H 9.0 are G ( R ) =

(4,5). 2.0 ±

0.3 (22).

3.3 =t 0.3

T h e smaller c o n t r i b u t i o n of the O H a d d i ­

t i o n p a t h i n eosin c o m p a r e d w i t h

fluorescein

is consistent w i t h the o c c u ­

p a t i o n of f o u r of the six xanthene r i n g sites b y b r o m i n e atoms. T h e o n l y i n ­ f o r m a t i o n a v a i l a b l e o n e r y t h r o s i n f r o m p u l s e r a d i o l y s i s locates the d i a n i o n at 450 m/x a n d the X m o n o a n i o n at 470 m/x T h e rate constants f o r d y e r e d u c t i o n b y e~

m

e~

m

as c a l c u l a t e d f r o m the

pseudo-first-order l i f e t i m e i n the presence of formate

(to

suppress

the o v e r l a p p i n g " r e d p r o d u c t " a b s o r p t i o n ) are g i v e n i n T a b l e II. b o t h f o r m a t e a n d a n e~

scavenger s u c h as N 0 or H 0 2

m

R

(6).

2

2

When

are present, the

o n l y significant r e a c t i o n is the r e d u c t i o n of the d y e b y C 0 ~ . T h e rate 2

constants d e t e r m i n e d b y a n a l o g c o m p u t e r fit to the g r o w t h rate of are g i v e n i n T a b l e II.

R

A l t h o u g h the b r o a d " r e d p r o d u c t " a b s o r p t i o n

l i m i t s the use of c o m p e t i t i o n m e t h o d s f o r d e t e r m i n i n g the O H r e a c t i o n rates, estimates w e r e m a d e b y a n a l o g c o m p u t e r s o l u t i o n to the kinetics of the

[dye/e" /OH] a q

system b a s e d o n the d e p e n d e n c e of G ( R )

G ( X ) on initial dye concentration

(Table

and

II).

It w a s s h o w n that R a n d X react together d u r i n g the early stages of t h e i r d e c a y i n deaerated bleaching yields under

6 0

solutions, w h i c h accounts f o r the l o w d y e

C o i r r a d i a t i o n unless a n e'

m

or O H

scavenger

is a d d e d . T h e d e c a y of R i n the absence of X is second o r d e r ; h o w e v e r , the rate constant decreases m a r k e d l y w i t h i n c r e a s i n g d y e c o n c e n t r a t i o n . T h e p r o p o s e d e x p l a n a t i o n is that the s e m i q u i n o n e forms a c o m p l e x w i t h u n r e a c t e d d y e , so that the a c t u a l d e c a y rate is c o n t r o l l e d b y the e q u i ­ l i b r i u m c o n c e n t r a t i o n of free s e m i q u i n o n e . T h e analysis l e d to the s e m i ­ q u i n o n e d i s p r o p o r t i o n a t i o n rate constant

a n d a l i m i t i n g v a l u e of

Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

the

21.

GROSSWEINER

Organic

e q u i l i b r i u m constant.

313

Dyes

T h e " r e d p r o d u c t " d e c a y is first order a n d p a r a l l e l s

the r e t u r n of c o l o r a t i o n i n the r e g i o n of the d y e a b s o r p t i o n . T h e m e c h a ­ n i s m p r o p o s e d is s l o w w a t e r ( o r O H " ) e l i m i n a t i o n f r o m the O H a d d u c t l e a d i n g to the f o r m a t i o n of X a n d e v e n t u a l l y a c o l o r e d p e r m a n e n t p r o d u c t (Table

II).

Downloaded by NANYANG TECHNOLOGICAL UNIV on June 21, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch021

Table II.

Pulse Radiolysis Rate Constants for Fluorescein and Eosin Fluorescein

Reaction

a

e~

m

+ S + H -> R +

Rate Constant*

pH

Ref.

1.4 X 10!° ( 1 5 % ) 2.0 X 1 0 ( 1 0 % )

10.7 13

5 20

2.6 X 10

7

(35%)

10.4

2.0 X 10

7

(20%)

10.4

10

CO," + S + H R + C0 2 R + H 0 -> L + S + OHOH- + S - » X + OHO H - 4- S ^ S O H R + X —> 2 S SOH- - > X + O H R + S ^ RS

Eosin Rate Constant

pH

11

Ref.

2.2 X 1 0

10

(20%)

9.0

c

5

4.2 X 10

8

(20%)

8.8

4

5

1.6 X 10

7

(20%)

9.0

c

10.7

5

.7

5

10.7 10.7

5 5 5

1.7 X 10 ( 2 0 % ) 0.6 X 10 ( 3 0 % ) 6.5 X 10 ( 2 0 % ) 70 sec." (10%) K < 5 X 10 M "

+

2

2

1.6 X 10 ( 2 0 % ) 1.4 X 10» ( 4.7 X 10 ( 2 0 % ) 100 sec." ( 2 0 % ) K < 4 X 10 M " 9

1 5 % )

8

1

6

1

1 0

10.4

9

9

8

1

5

1

9.0 9.0 8.5 9.0 9.0

c c

4 c c

Dye dianion (S); semiquinone dianion ( R ) ; semioxidized dye monoanion ( X ) ; O H adduct (SOH •); leuco base ( L ) ; complex (RS). In units of liters/mole-sec. unless indicated otherwise. Unpublished data.

a

b c

Table III.

Pulse Radiolysis Rate Constants for Other Dyes

Reaction Dye + e~ m

Dye + O H Dye + C 0 " Dye + D-glucose 2

a

ox

Dye Acriflavine Rhodamine B Acridine orange M e t h y l green Rhodamine B Rhodamine B Methylene blue

Rate 3.3 X ^3 X 3.2 X 4.3 X ^9 X 1.8 X 2 X

Ref. 20 20 2 2 20 20 2

Constant" 10 (10%) 10 10 10 10 10 (25%) 10 10

10

10

10

9

8

9

Units of liters/mole-sec. Pulse Radiolysis of Other Dyes in Aqueous Solution. I n c o n n e c t i o n

w i t h a n i n v e s t i g a t i o n of e l e c t r o n p u l s e - i n d u c e d l u m i n e s c e n c e b e l o w ) , P r i i t z a n d L a n d (20)

(discussed

r e p o r t e d rate constants for the

of r h o d a m i n e B a n d a c r i f l a v i n e ( T a b l e I I I ) .

reactions

The rhodamine B reduction

p r o d u c t ( i n the presence of f o r m a t e ) absorbs most strongly at 410 m/x, w h i c h corresponds w i t h the s e m i q u i n o n e transient o b t a i n e d b y the p h o t o l y s i s of the d y e i n aqueous f o r m e d w i t h N 0 present 2

a l c o h o l solutions

absorbs b e t w e e n

350

(24).

a n d 500

The

species

m/x. It

Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

flash was

314

RADIATION CHEMISTRY

1

o b s e r v e d that b o t h the s e m i q u i n o n e a n d the o x i d a t i o n p r o d u c t are l o n g l i v e d i n deaerated

solutions, w h i c h suggests that the latter i n c l u d e s a

s u b s t a n t i a l c o n t r i b u t i o n f r o m the O H a d d u c t . a n i o n complexes b y B a l a z s et at.

w e r e r e p o r t e d f o r the r e a c t i o n of e~

m

m e t h y l green ( M G

)

2 +

(Table III).

I n a s t u d y of d y e - p o l y -

( d i s c u s s e d b e l o w ) rate constants

(2)

w i t h a c r i d i n e orange For A O

+

(AO )

and

+

the d i s a p p e a r a n c e

of the

Downloaded by NANYANG TECHNOLOGICAL UNIV on June 21, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch021

d y e is a c c o m p a n i e d b y the g r o w t h of a transient a b s o r p t i o n at a p p r o x i ­ m a t e l y 390 m/ji, w h i c h was a t t r i b u t e d to the one-electron a d d i t i o n p r o d u c t . Pulse Radiolysis of Dye—Polymer Complexes. P u l s e r a d i o l y s i s studies of d y e - p o l y a n i o n complexes h a v e y i e l d e d i n f o r m a t i o n o n the r e a c t i o n of r e d u c i b l e dyes w i t h e~

w h e n the d y e is b o u n d to a h i g h m o l e c u l a r w e i g h t

m

substrate (2).

T h e i n v e s t i g a t i o n of the m e t h y l e n e b l u e - h e p a r i n c o m p l e x

w a s b a s e d o n the c o r r e l a t i o n of b i n d i n g w i t h the rate constant for d y e r e d u c t i o n b y e~ , m

i n the presence of D-glucose as O H - a n d H - a t o m scav­

enger. T h e o c c u r r e n c e of b i n d i n g w a s d e d u c e d f r o m t h e " m e t a c h r o m a t i c " s p e c t r a l shift, i n w h i c h the M B a b s o r p t i o n at 665 m/x is s t r o n g l y q u e n c h e d +

i n the c o m p l e x w i t h the a p p e a r a n c e s u c h c o n d i t i o n s the rate constant

of a n e w b a n d at 580 m/x. U n d e r for the r e a c t i o n

of e~

with

m

MB

d i m i n i s h e s f r o m the v a l u e i n free s o l u t i o n ( T a b l e I ) to as l o w as 1.1 10 M 9

_ 1

sec." . T h e d e c a y of the e~ 1

+

X

a b s o r p t i o n w a s a c c o m p a n i e d b y the

m

b l e a c h i n g of the c o m p l e x at the " m e t a c h r o m a t i c

wavelength" and

the

g r o w t h of a transient species at 420 m/x. T h e latter w a s a t t r i b u t e d to the s e m i q u i n o n e M B - , w h i c h w a s stable f o r a c o n s i d e r a b l y l o n g e r p e r i o d c o m p a r e d w i t h the case of free d y e .

( A slower g r o w t h of M B - f r o m the

r e a c t i o n of the d y e w i t h o x i d i z e d glucose was o b s e r v e d a l s o ) . T h e d i r e c t r e l a t i o n s h i p b e t w e e n c o m p l e x i n g a n d the l o w e r e~

m

b y a l t e r i n g c o n d i t i o n s to reverse i n w h i c h case the e~

m

reactivity was shown

the m e t a c h r o m a t i c

wavelength

shift,

rate constant increases t o w a r d s the free s o l u t i o n

v a l u e . F o r e x a m p l e , a d d i n g N a C l o r r a i s i n g the t e m p e r a t u r e leads to a n almost c o m p l e t e restoration of t h e h i g h r e a c t i v i t y . A l o w e r e~

m

w a s o b s e r v e d also w h e n M B

+

reactivity

is c o m p l e x e d to other p o l y m e r i c substrates

( s o d i u m h y a l u r o n a t e , s o d i u m p o l y e t h y l e n e sulfonate, s o d i u m p o l y s t y r e n e sulfonate,

s o d i u m c a r b o x y m e t h y l cellulose,

metachromatic

and D N A ) and with

d y e , a c r i d i n e orange c o m p l e x e d to p o l y anions.

m o r e , the l o w e r i n g of e~

m

r e a c t i v i t y w a s f o u n d f o r the

d y e , m e t h y l g r e e n a n d several other cations

the

Further­

non-metachromatic

(cetyl pyridinium chloride,

p r o t a m i n e sulfate, a n d p o l y l y s i n e h y d r o b r o m i d e )

when complexed

to

h e p a r i n or D N A . T h e last t w o cases are p a r t i c u l a r l y interesting because t h e y represent

p o l y c a t i o n s b o u n d to p o l y a n i o n s , i n w h i c h the

strong

interactions c a n b e d e m o n s t r a t e d b y p u l s e r a d i o l y s i s i n the absence of complicating

precipitation

effects

which

occur

with

turbidimetric

methods.

Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

21.

GROSSWEINER

Organic

315

Dyes

Luminescence of Dyes Induced by Electron Pulse Irradiation. P r i i t z , S o m m e r m e y e r , a n d L a n d (19)

m a d e the r e m a r k a b l e d i s c o v e r y that the

e l e c t r o n p u l s e i r r a d i a t i o n of r h o d a m i n e B ,

fluorescein,

or a c r i f l a v i n e i n

d i l u t e aqueous s o l u t i o n leads to v i s i b l e l i g h t e m i s s i o n that b u i l d s u p a n d decays over tens of m i c r o s e c o n d s .

T h e intensity is — 1 0

3

times h i g h e r

t h a n the e m i s s i o n i n d u c e d b y d i r e c t electron excitation a n d w a s a t t r i b u t e d to a c h e m i l u m i n e s c e n t process i n v o l v i n g the w a t e r d e c o m p o s i t i o n p r o d ­ ucts. T h i s l i g h t e m i s s i o n is q u e n c h e d b y either e~ Downloaded by NANYANG TECHNOLOGICAL UNIV on June 21, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch021

m

scavengers or f o r m a t e ,

w h i c h l e d to a m e c h a n i s m i n v o l v i n g the r e a c t i o n of e~

aq

dye i n t e r m e d i a t e .

w i t h the o x i d i z e d

I n a recent extension of this w o r k u t i l i z i n g s e q u e n t i a l

l i g h t flash a n d e l e c t r o n p u l s e i r r a d i a t i o n s , G r o s s w e i n e r a n d R o d d e

(9)

d e d u c e d that the f o r m of o x i d i z e d fluorescein or eosin w h i c h reacts w i t h e~

m

is the O H a d d u c t a n d not the s e m i o x i d i z e d species X .

Furthermore,

the t r i p l e t states of these dyes also react w i t h e~ , l e a d i n g to a n intense a(l

c h e m i l u m i n e s c e n c e f r o m the e x c i t e d s e m i q u i n o n e . T h e latter w o r k i n d i ­ cates that studies of metastable d y e species are feasible w i t h c o m b i n e d flash p h o t o l y t i c a n d p u l s e r a d i o l y t i c m e t h o d s .

Discussion I n a s u r v e y of d y e r a d i a t i o n c h e m i s t r y S w a l l o w (25)

n o t e d that a

n u m b e r of dyes i n aqueous s o l u t i o n react as f o l l o w s : ( a ) I r r a d i a t i o n of aerated solutions i n the absence of o r g a n i c s u b ­ strates leads to i r r e v e r s i b l e o x i d a t i o n , b u t oxygen-free solutions are b l e a c h e d via i r r e v e r s i b l e o x i d a t i o n a n d r e v e r s i b l e r e d u c t i o n . ( b ) W h e n o x i d i z a b l e substrates are present, aerated solutions are r a d i a t i o n resistant, w h i l e oxygen-free solutions are r e v e r s i b l y r e d u c e d . T h e s e effects w e r e e x p l a i n e d b y a general m e c h a n i s m i n v o l v i n g o x i ­ d a t i o n of the d y e b y O H a n d r e d u c t i o n of the d y e b y H atoms a n d the o x i d i z e d o r g a n i c substrate. and

T h e p u l s e r a d i o l y s i s results s h o w that

not H atoms m a k e the greater

e~

m

c o n t r i b u t i o n to d y e r e d u c t i o n i n

n e u t r a l a n d a l k a l i n e solutions a n d that H a n d O H a d d i t i o n m u s t c o n s i d e r e d as w e l l as electron-transfer reactions.

be

T h e f o l l o w i n g general

r a d i o l y s i s m e c h a n i s m indicates the reactions l i k e l y to be significant i n deaerated aqueous solutions of dyes possessing the q u i n o n o i d structure (e.g., azines, t h i a z i n e s , acridines,

D + e

a q

-

D

xanthenes).

r e d

Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

(1)

316

RADIATION CHEMISTRY

DOH-

1

( ) 2 a

D + OHD

o x

+ OH"

(2b)

Downloaded by NANYANG TECHNOLOGICAL UNIV on June 21, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch021

(3a)

(3b)

D

D

r e d

r e d

+ D

+ D

E>ox + D

o x

r e d

o

* 2D

(4)

» D + leuco base

(5)

» products

x

(6)

F o r t h e fluoresceins i t has b e e n p r o p o s e d that t h e O H a d d u c t decays b y slow water (or O H " ) elimination ( 5 ) : DOH- ->D

0 X

+ OH"

(7)

a n d that t h e O H a d d u c t is the species r e s p o n s i b l e f o r t h e c h e m i l u m i n e s cence i n d u c e d b y electron-pulse i r r a d i a t i o n (9,

20):

D O H - + e~ -> D * + O H "

(8)

m

[ A n intense l u m i n e s c e n c e has b e e n o b s e r v e d also w h e n I" w a s present (20, 21), a t t r i b u t e d to t h e r e a c t i o n of i o d i n e atoms w i t h t h e r e d u c e d d y e . ] T h e r e d u c t i v e attack is suppressed b y o x y g e n via Reactions 9 a n d 10. +0 ->0 "

e- (U')

2

aq

D

r e d

(9)

2

+ 0 -*D + 0 2

(10)

2

R e a c t i o n 10 is t h e process r e s p o n s i b l e f o r restoring t h e d y e i n p h o t o ­ c h e m i c a l a u t o x i d a t i o n s . T h e r e a c t i o n of 0 " ( o r H 0 - i n a c i d i c solu­ 2

2

t i o n s ) w i t h dyes is n o t e x p e c t e d to b e fast. T h e o x i d i z a b l e o r g a n i c sub­ strate scavenges H a n d O H . AH

2

+ O H - ( H ) —> A H - + H 0 ( H ) 2

2

(11)

I n a n u m b e r of cases i t has b e e n s h o w n that the p a r t i a l l y o x i d i z e d sub­ strate c a n r e d u c e t h e d y e (2, 4, 5,12, 20): D + A H - —» D

r e d

+ A

Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

(12)

21.

GROSSWEINER

Organic Table IV.

Dye

Dye Bleaching G Values G(-D) Oxidative

Conditions

Methylene blue

Downloaded by NANYANG TECHNOLOGICAL UNIV on June 21, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch021

317

Dyes

Deaerated Aerated Deaerated w i t h organic substances present Deaerated w i t h formate

Fluorescein

0.6 ± 0.1° 0.68 ±= 0 . 0 8

0.59 0.66

a b c

25 25

a

25 12

a

22 18 22

b 6

2.32 0.95 0.85

22 22 22 22 22 22

b c

c

2.06 1.47° 1.71

2

c

2

Aerated

Safranine T

0.2

a

a

Deaerated Aerated Deaerated w i t h formate Deaerated w i t h H 0 Deaerated w i t h N 0 Aerated w i t h formate 2

1.6 ±

Ref.

2.9 ± 0 . 1 3.15 ± 0.15

Deaerated Aerated Deaerated w i t h formate

Eosin

G(-D) Reductive

0.00

0.65 ±

6

14

0.01

Average of literature values cited in reference. Total of oxidative and reductive decoloration yields. G values corrected for absorption of permanent oxidation product. It is interesting to c o m p a r e the p u l s e r a d i o l y s i s m e c h a n i s m w i t h d y e

b l e a c h i n g y i e l d s r e p o r t e d for l o w intensity, steady i r r a d i a t i o n s IV).

(Table

If n O H r a d i c a l s are n e e d e d to d e c o l o r one d y e m o l e c u l e , b l e a c h i n g

y i e l d s u n d e r i d e a l o x i d i z i n g c o n d i t i o n s s h o u l d be G O H / n i n air-saturated solutions, ^

G ) / n i n nitrous

(GOH +

(GOH +

G

E

e

G ) / n i n the

+

H

p e r o x i d e concentrations H 0 ). 2

2

T a k i n g 2.65,

of

solutions,

moderate

and

0.55

fluorescein,

T h e possible i n t e r m e d i a t e

for

G

O

H

and

, G

e

G

H

radical and molecular products.

T h e values of G ( — D )

T h i s p r e d i c t i o n is i n excellent

m a n y experiments

on methylene

e

+

unstable

i n the

pres­

GOH +

G )

b l u e w i t h different substrates

0.8 w i t h the

H

agreement w i t h the average

benzoate, e t h y l a l c o h o l , lactate, f o r m a t e ) . p l a i n e d d i s c r e p a n c y of ^

to 3-4

steps i n c l u d e d i s p r o p o r t i o n a t i o n

ence of o x i d i z a b l e o r g a n i c substrates s h o u l d be 1 / 2 ( G 3.0.

by

leads

a n d safranine T a n d n =

of s e m i o x i d i z e d d y e a n d successive reactions of O H w i t h the



and

hydrogen

(i.e., w h e n H a n d O H are not s c a v e n g e d 2.8,

n — 4 for m e t h y l e n e b l u e , for eosin.

oxide-saturated

presence

of

(e.g.,

H o w e v e r , there is a n unex­

fluoresceins

w h i c h m a y be c a u s e d

b y the o x i d a t i o n of the s e m i q u i n o n e b y p r i m a r y H 0 . 2

2

T h e extent of

b l e a c h i n g i n deaerated solutions s h o u l d b e c o n t r o l l e d b y the c o m p e t i t i o n b e t w e e n Reactions 5 a n d 6 w i t h the b a c k process, R e a c t i o n 4. T h e l o w values of G ( — D ) f o r the

fluoresceins

are consistent w i t h the m e a s u r e d

Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

318

RADIATION CHEMISTRY

rate constants of the r a d i c a l d e c a y reactions

1

T h e methylene blue

(4).

results f o r d e a e r a t e d solutions suggest that the b a c k r e a c t i o n is u n i m p o r ­ tant c o m p a r e d w i t h the r a d i c a l d e c a y processes because the

observed

values of G ( — D ) i n d i c a t e that f o u r O H r a d i c a l s are r e q u i r e d for p e r ­ m a n e n t o x i d a t i o n a n d that a l l H a n d e'

m

Reactions 1, 3, a n d 5.

Downloaded by NANYANG TECHNOLOGICAL UNIV on June 21, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch021

OH-

l e a d to r e v e r s i b l e r e d u c t i o n via

(It is not k n o w n w h e t h e r m e t h y l e n e b l u e forms

or H - a t o m a d d u c t s ) .

T h e low bleaching yields obtained w h e n

aerated solutions of v a r i o u s dyes are i r r a d i a t e d i n the presence o x i d i z a b l e substrate (24)

are e x p l a i n e d b y the s c a v e n g i n g of e~

m

atoms b y o x y g e n to g i v e u n r e a c t i v e 0 ~ 2

of a n and H

( R e a c t i o n 9) a n d the r e a c t i o n

of O H ( a n d p o s s i b l y H ) w i t h the o r g a n i c substance ( R e a c t i o n 1 1 ) .

The

extent of b l e a c h i n g w o u l d s t i l l r e m a i n s m a l l even if the r e a c t e d scavenger reduces the d y e ( R e a c t i o n 12) because of R e a c t i o n 10. F i g u r e 1 shows a c o r r e l a t i o n of the r e p o r t e d e~

&q

the values o b t a i n e d f r o m the D e b y e e q u a t i o n .

rate constants w i t h

(The

calculations

are

b a s e d o n Stokes' l a w f o r the d y e d i f f u s i o n constants, the e x p e r i m e n t a l v a l u e of 4.7 X

10~ sq. cm./sec. for the e~ 3

d i f f u s i o n constant (23),

m

dye

r a d i i f r o m spheres of d e n s i t y 1.3 g r a m / c c . a n d the a p p r o p r i a t e m o l e c u l a r w e i g h t , a n d a n assumed e~

m

r a d i u s of 2.7 A . ) . T h e agreement is reason­

a b l y g o o d i n v i e w of the uncertainties i n the c h o i c e of parameters a n d indicates that the n u c l e o p h i l i c attack of the electron o n these dyes is c o n t r o l l e d b y the encounter rate. T h e a v a i l a b l e d a t a s h o w that r e d u c t i o n b y C 0 ~ is m o r e selective, w i t h rate constants r a n g i n g f r o m 2.6 X 10 2

fluorescein

to 5.6 X

10

9

for

7

for m e t h y l e n e b l u e . It w a s suggested ( 5 )

that

the rate constants o b t a i n e d w i t h the xanthenes correlate w i t h the c h a r g e d i s t r i b u t i o n of the q u i n o n o i d structure, w h i l e steric effects at the

re­

d u c i b l e c e n t r a l c a r b o n a t o m a n d changes i n the b r i d g e structure m a y be i n v o l v e d i n c o m p a r i s o n s b e t w e e n the various d y e types. A l t h o u g h i t has b e e n o b s e r v e d that the O H r e a c t i o n p r o d u c t s i n the xanthenes b u i l d u p m o r e s l o w l y t h a n those of e~

(5, 20),

m

accurate d e t e r m i n a t i o n s of the

rate constants are c o m p l i c a t e d b y the o c c u r r e n c e of b o t h electron transfer a n d a d d i t i o n reactions. F u r t h e r m o r e , the strong v i s i b l e c o l o r a t i o n of these p r o d u c t s l i m i t s the use of c o m p e t i t i o n m e t h o d s w h i c h h a v e b e e n a p p l i e d to smaller a r o m a t i c molecules. rate constants of 3 ± 10

9

K i n e t i c estimates h a v e l e d to t o t a l O H

1 X 1 0 for the

for r h o d a m i n e B ( T a b l e I I I ) .

of O H w i t h h y d r o q u i n o n e (1.2 X (1)

fluoresceins

9

(Table II) and —

9 X

A c o m p a r i s o n w i t h the r e a c t i o n rate 10 ) 10

a n d b e n z o q u i n o n e (1.2 X

10 ) 9

suggests that the xanthene d y e results are the correct m a g n i t u d e . T h e c h e m i l u m i n e s c e n t reactions of e~

m

w i t h dyes represent a n e w

process w h i c h m a y h a v e b r o a d e r i m p l i c a t i o n s . T h e f o r m a t i o n of e x c i t e d d y e i n R e a c t i o n 8 s h o u l d l e a d to t r i p l e t f o r m a t i o n via intersystem crossing, a l t h o u g h the y i e l d w o u l d be l o w because of c o m p e t i t i o n f r o m R e a c t i o n 1.

Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

21.

GROSSWEINER

Organic

Dyes

319

MG

2 +

/

MB ©

Downloaded by NANYANG TECHNOLOGICAL UNIV on June 21, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch021

AO

2 2 , -

< / ©

'

©

/

/

^RHB / 2

0EO 0

/ FL "" k. ' ' i

2

2

»

5

6

IO- x k meas ,0

Figure 1. Rate constants for reaction of e~ with dyes (liters/mole-sec). Ordinate: calculated from Dehye equation for encounter-limited reactions; abscissa: experimental results aa

T h e r e a c t i o n of t r i p l e t d y e w i t h e~n l e a d i n g to t h e excited s e m i q u i n o n e q

has b e e n o b s e r v e d o n l y w i t h

fluorescein 3D + 6 T

a q

a n d eosin thus f a r ( 9 ) : ^D*

r e d

(13)

A l t h o u g h R e a c t i o n 13 w a s i d e n t i f i e d b y u s i n g l i g h t t o excite t h e t r i p l e t dye a n d a n electron p u l s e to generate e~ , i t is possible that b o t h species aq

c a n b e f o r m e d p h o t o c h e m i c a l l y i n c e r t a i n systems i n v o l v i n g s o l v a t e d or t r a p p e d electrons.

T h i s is e q u i v a l e n t to a t w o - q u a n t a process, i n w h i c h

the r e d u c t i o n p o t e n t i a l of t h e e l e c t r o n m a y b e t r a n s f e r r e d t o t h e d y e species d u r i n g t h e l i f e t i m e of t h e e x c i t e d state. It w o u l d b e i n t e r e s t i n g to l e a r n w h e t h e r R e a c t i o n 13 occurs w i t h other aromatics i n p o l a r solvents that c a n solvate electrons i n c l u d i n g b i o l o g i c a l photosensitizers. Acknowledgment T h e a u t h o r is p l e a s e d t o a c k n o w l e d g e t h e s u p p o r t of t h e N a t i o n a l Institutes of H e a l t h o n G r a n t s N o s . G M - 1 0 0 3 8 a n d G M - 1 2 7 1 6 d u r i n g t h e p r e p a r a t i o n of this p a p e r . I n a d d i t i o n , h e thanks G . O . P h i l l i p s of S a l f o r d U n i v e r s i t y f o r p r e p r i n t s of w o r k n o t e d i n t h e text a n d A . H u s a i n a n d A . F . R o d d e , Jr. of M i c h a e l Reese H o s p i t a l a n d M e d i c a l C e n t e r f o r m a k i n g a v a i l a b l e u n p u b l i s h e d results o n eosin p u l s e r a d i o l y s i s .

Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

320

RADIATION CHEMISTRY

1

Downloaded by NANYANG TECHNOLOGICAL UNIV on June 21, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch021

Literature Cited (1) Adams, G. E., Michael, B. D., Trans. Faraday Soc. 63, 1171 (1967). (2) Balazs, E. A., Davies, J. W., Phillips, G. O., Scheufele, D. S.,J.Chem. Soc., in press. (3) Baxendale, J. H., etal.,Nature 201, 468 (1964). (4) Chrysochoos, J., Ovadia, J., Grossweiner, L. I., J. Phys. Chem. 71, 1629 (1967). (5) Cordier, P., Grossweiner, L. I.,J.Phys. Chem. 72, 2018 (1968). (6) Cordier, P., Grossweiner, L. I., unpublished result. (7) Grossweiner, L. I., Zwicker, E. F.,J.Chem. Phys. 34, 1411 (1961). (8) Grossweiner, L. I., Rodde, A. F. Jr., Sandberg, G., Chrysochoos, J., Nature 210, 1154 (1966). (9) Grossweiner, L. I., Rodde, A. F. Jr.,J.Phys. Chem. 72, 756 (1968). (10) Kasche, V., Lindqvist, L., Photochem. Photobiol. 4, 923 (1965). (11) Kato, S., Morita, M., Koizumi, M., Bull. Chem. Soc. Japan 37, 117 (1964). (12) Keene, J. P., Land, E. J., Swallow, A. J., "PulseRadiolysis,"M. Ebert, J. P, Keene, A. J. Swallow, J. H. Baxendale, eds., pp. 227-245, Aca­ demic Press, New York, 1965. (13) Lindqvist, L., Arkiv Kemi 16, 79 (1960). (14) Marketos, D. G., Rakintzis, N. Th., Z. Physik. Chem., N.F. 44, 270 (1965). (15) Matsumoto, S., Bull. Chem. Soc. Japan 37, 491 (1964). (16) Ohno, T., Kato, S., Koizumi, M., Bull. Chem. Soc. Japan 39, 232 (1966). (17) Parker, C. A.,J.Phys. Chem. 63, 26 (1959). (18) Patti, F.,J.Chim. Phys. 52, 38 (1955). (19) Prütz, W., Sommermeyer,K.,Land, E. J., Nature 212, 1043 (1966). (20) Prütz, W., Land, E. J., Biophysik 3, 349 (1967). (21) Prütz, W., Sommermeyer,K.,Biophysik 4, 48 (1967). (22) Rodde, A. F., Jr., Grossweiner, L. I., J. Phys. Chem., in press. (23) Schmidt, K.H.,Buck, W. L., Science 151, 70 (1966). (24) Stevens, B., Sharpe, R. R., Bingham, W. S. W., Photochem. Photobiol. 6, 83 (1967). (25) Swallow, A. J., "Radiation Chemistry of Organic Compounds," pp. 175185, Pergamon Press, Oxford, 1960. RECEIVED December 22, 1967,

Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.