Size Exclusion Chromatography - American Chemical Society


Size Exclusion Chromatography - American Chemical Societypubs.acs.org/doi/pdf/10.1021/bk-1984-0245.ch0130097-6156/84/024...

0 downloads 87 Views 2MB Size

13 Deuterium Oxide Used to Characterize Columns for Aqueous Size Exclusion Chromatography HOWARD G. BARTH Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 11, 2015 | http://pubs.acs.org Publication Date: March 30, 1984 | doi: 10.1021/bk-1984-0245.ch013

Research Center, Hercules Incorporated, Wilmington, DE 19899 FRED Ε. REGNIER Department of Biochemistry, Purdue University, West Lafayette, IN 47907

In order to characterize size-exclusion chroma­ tographic (SEC) columns, both the interstitial volume and the pore volume of a packed column must be determined. This information is required for the construction of a calibration curve as well as to obtain SEC distribution coefficients. In aqueous SEC, either glucose or deuterium oxide (D O) are commonly used to measure the total permeation volume of a column. Using LiChrospher silica packings with a glycerylpropyl silane bonded phase (SynChropak GPC), we found that the elution volume of D O was significantly greater than the results obtained for glucose. Controlled-pore glass packings which have narrower pore-size distributions did not exhibit this property. From these results, it appears that the silica packing contains a population of micropores which are accessible only to low molecular weight probes. 2

2

Size e x c l u s i o n chromatography (SEC) i s a s e p a r a t i o n process by which molecules are f r a c t i o n a t e d by s i z e on the b a s i s o f d i f ­ f e r e n t i a l p e n e t r a t i o n i n t o porous p a r t i c u l a t e m a t r i c e s . Elution volume ( V ) o f any given molecular species r e l a t i v e t o another of d i f f e r e n t s i z e i s dependent on the pore diameter o f the m a t r i x , p o r e - s i z e d i s t r i b u t i o n , pore volume ( V | ) , i n t e r s t i t i a l volume ( V ) and column dimensions. Use o f SEC t o estimate molecular s i z e i s achieved by p l o t t i n g the l o g o f the molecular weight o f a s e r i e s o f c a l i b r a n t s against t h e i r e l u t i o n volume. Since V i s a f u n c t i o n of V and V|, i t s magnitude w i l l be dependent on the geometry o f a column. A more u s e f u l and fundamental parameter than e l u t i o n volume i s the dimensionless s i z e e x c l u s i o n d i s t r i b u t i o n c o e f f i c i e n t (K ) which i s r e l a t e d t o V| and V by the equation: e

0

e

D

0

0

0097-6156/84/0245-0207S06.00/0 © 1984 American Chemical Society

In Size Exclusion Chromatography; Provder, T.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

SIZE E X C L U S I O N

208

Use of K i n s t e a d of V i n the c a l i b r a t i o n of columns produces a c a l i b r a t i o n curve that i s independent of column dimen­ sions and pore volume. To o b t a i n Kp f o r any species r e q u i r e s the determination of V and V | i n a d d i t i o n to V . V is u s u a l l y taken as the e l u t i o n volume of an excluded polymer w h i l e V | i s equal t o V - V . The volume i s the t o t a l permeation volume of the column and i s measured w i t h a low molec­ u l a r weight compound t h a t t o t a l l y permeates p a r t i c l e m a t r i c e s . Deuterium oxide (D2O) has been used to determine V«j i n SEC columns because i t s low molecular weight assures high m a t r i x permeation and i t s high d i f f u s i o n c o e f f i c i e n t i s u s e f u l i n determining column e f f i c i e n c y (1-3). ( I t should be noted t h a t i n aqueous mobile phases, DHO would be present a f t e r i n j e c t i n g D2O i n t o a column because of hydrogen exchange.) I n a d d i t i o n to D2O, t r i t i a t e d water (THO) has been used as a low molecular weight probe of V i n SEC (1.4-7). Marsden (4.8)» however, cautions t h a t t r i t i u m exchange w i t h i n the c r o s s l i n k e d p o l y ­ saccharide m a t r i x c o u l d r e s u l t i n e r r o r s when THO i s used t o determine V^. From measurements w i t h H2* 0, Marsden found t h a t K f o r THO was 1.09 ( 8 ) . The assumption has g e n e r a l l y been made i n SEC w i t h m a t r i c e s g r e a t e r than 100Â pore diameter t h a t there i s l i t t l e , i f any, s i z e d i s c r i m i n a t i o n of molecules l e s s than 500 d a l t o n s , i . e . , they would a l l e l u t e at Vj. During our s t u d i e s w i t h SynChropak, a high-performance SEC packing c o n s i s t i n g of LiChrospher s i l i c a w i t h a g l y c e r y l p r o p y l s i l a n e bonded phase, we found to our s u r p r i s e t h a t the e l u t i o n volume of D2O was s i g n i f i c a n t l y g r e a t e r than t h a t of glucose which we had p r e v i o u s l y used as a low molecular weight c a l i b r a n t (9-11). The problem of determining V i n SEC i s s i m i l a r t o t h a t of determining zero r e t e n t i o n time ( t ) i n other l i q u i d chroma­ tography columns. Recently, there have been s e v e r a l papers d e a l i n g w i t h the determination of r e t e n t i o n time of a r e t a i n e d peak i n HPLC (12-19). In high-performance reversed-phase chromatography, McCormick and Karger (15) and Berendsen, et a l . , (16) have employed D2O to measure t . Neidhart et a l . , (12.14) took a d i f f e r e n t approach by determining the r e t e n t i o n times of a s o l u t e as a f u n c t i o n of temperature. Since the enthalpy of a d s o r p t i o n of a s o l u t e onto a s t a t i o n a r y phase i s n e g a t i v e , the e l u t i o n time of a r e t a i n e d species should decrease w i t h i n c r e a s i n g temperature. However, none of these methods r i g o r o u s l y examines the p o s s i b i l i t y t h a t m i c r o p o r o s i t y may a l s o cause d i f f e r e n c e s i n t between s o l u t e s . This paper d e s c r i b e s the extent of r e t e n t i o n time d i f f e r e n c e s between D2O and glucose on bonded phase i n o r g a n i c supports. D

e

Q

T

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 11, 2015 | http://pubs.acs.org Publication Date: March 30, 1984 | doi: 10.1021/bk-1984-0245.ch013

CHROMATOGRAPHY

e

0

Q

T

8

D

T

0

Q

0

In Size Exclusion Chromatography; Provder, T.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

13.

BARTH AND

REGNIER

Deuterium Oxide for

Aqueous

SEC

209

Experimental

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 11, 2015 | http://pubs.acs.org Publication Date: March 30, 1984 | doi: 10.1021/bk-1984-0245.ch013

Apparatus. Pumping systems used i n these s t u d i e s f o r h i g h performance columns were a V a r i a n 8500 syringe pump and a V a r i a n 5000 i s o c r a t i c pump. An A l t e x 110A was employed f o r the cont r o l l e d - p o r e g l a s s (CP6) columns. Waters A s s o c i a t e s model 401 refractometers were used on a l l instruments. Stagnant mobile phase was kept i n the reference s i d e of the refractometer. Samples were i n j e c t e d w i t h a Eheodyne 70-10 i n j e c t i o n v a l v e using a 2 0 y l loop (lOOul f o r CPG columns). Columns. The packing m a t e r i a l s were lOum SynChropak and 37-74um c o n t r o l l e d - p o r e g l a s s w i t h g l y c e r y l s i l a n e bonded phase. SynChropak columns were purchased prepacked i n 25 cm χ 4.1 mm ID s t a i n l e s s s t e e l columns from SynChrom (Linden, IN). Nominal pore s i z e s were 100, 300, 1000 and 4000Â. CPG was dry packed i n t o s t a i n l e s s s t e e l columns using the t a p - f i l l procedure (20). Column dimensions were 100 cm χ 4.6 mm ID f o r the 1000, 1400, 2000 and 3000Â m a t e r i a l and 50 cm χ 4.6 mm ID f o r the 75Â packing. A d e s c r i p t i o n of these packings i s given i n Table I . Values l i s t e d i n the t a b l e were obtained from the manufacturer ( E l e c t r o n u c l e o n i c s I n c . ) .

TABLE I .

GLYCERYL-CPG COLUMN PACKING MATERIAL (200/400 mesh)

Nominal Mean Pore Pore S i z e Pore Pore S i z e . A Diameter. ft D i s t r i b u t i o n . +% Volume, cc/κ 75 1000 1400 2000 3000

75 1038 1489 1902 3125

6.0 7.3 6.4 10 10

Chemicals. Urea (99+%), glucose and D2O from A l d r i c h Chemical Co. (Gold L a b e l ) .

0.47 1.22 1.16 0.80 1.25

Surface Area. m /g 2

140 28 17.6 10 7.9

(99.8%) were obtained

Mobile Phase P r e p a r a t i o n . D i s t i l l e d water and 6M urea were f i l t e r e d under vacuum using a 0.22um membrane f i l t e r (Type GS, Millipore). Sample P r e p a r a t i o n i n 6M Urea. S o l u t i o n s of glucose were prepared d i r e c t l y i n 6M urea. D2O s o l u t i o n s were prepared by d i l u t i n g equal volumes of D 0 and 12M urea and the r e s u l t i n g s o l u t i o n was then d i l u t e d 1:1 w i t h 6M urea. 2

In Size Exclusion Chromatography; Provder, T.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

SIZE E X C L U S I O N C H R O M A T O G R A P H Y

210

E l e v a t e d Temperature S t u d i e s , The V a r i a n 5000 l i q u i d chromatograph and a Waters A s s o c i a t e s 401 d i f f e r e n t i a l r e f r a c t o m e t e r were employed. The column was heated w i t h a V a r i a n u n i v e r s a l heater b l o c k a t an estimated accuracy o f + 0.5 C. About 15-30 minutes were allowed f o r column e q u i l i b r a t i o n f o r a given temperature. The r e c o r d e r employed was a V a r i a n 9176. A 25 cm χ 4.6 mm ID long 300ft SynChropak column was used to evaluate temperature e f f e c t s . I n j e c t i o n s were made w i t h 5% D2O and 1.3 mg/ml glucose s o l u t i o n s . D2O gave a negative r e f r a c t i v e index response. Because of some peak t a i l i n g , the number o f t h e o r e t i c a l p l a t e s was based on peak width at one-half peak h e i g h t : N=5.54 (t /wi/2> . The pooled standard d e v i a t i o n ( a l l temperatures) of r e t e n t i o n time measurements (df=34) was + 0.007 minutes.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 11, 2015 | http://pubs.acs.org Publication Date: March 30, 1984 | doi: 10.1021/bk-1984-0245.ch013

e

2

r

P h y s i c a l Measurements on Supports. Pore diameter and volume were determined by mercury porosimetry. Micropores were estimated by the BET and t-curve methods (21, 2 2 ) . R e s u l t s and D i s c u s s i o n E l u t i o n Volume o f DgO and Glucose on C o n t r o l l e d - P o r e Glass and SynChropak Columns. The e l u t i o n volumes o f D2O and glucose on 100, 300 and 4000Â p o r e - s i z e SynChropak columns are given i n Table I I . As i n d i c a t e d , the e l u t i o n volume of D2O was g r e a t e r than t h a t of glucose i n a l l cases. Because o f the s m a l l e r hydrodynamic volume of D2O, as compared t o glucose, t h i s t r e n d was expected. However, the s i z a b l e e l u t i o n volume d i f f e r e n c e between D2O and glucose e x h i b i t e d by the 100 and 300Â columns i s s u r p r i s i n g . On the b a s i s o f t o t a l pore volume, V|, the percentage o f micropore volume t h a t was a v a i l a b l e t o D2O and not glucose was h i g h : 17.4 + 1.7% and 8.4 + 1.5%, r e s p e c t i v e l y , f o r the 100 and 300ft packings. The r e s u l t obtained w i t h the 4000ft column was w i t h i n experimental e r r o r . Glucose and D2O were a l s o t e s t e d on f i v e g l y c e r y l p r o p y l CPG packings o f 75, 1000, 1400, 2000 and 3000ft and the r e s u l t s are presented i n Table I I I . The percentage o f micropore volume t h a t was a v a i l a b l e t o D2O and not glucose was c l o s e t o o r w i t h i n the experimental e r r o r of V determination f o r a l l columns. e

In Size Exclusion Chromatography; Provder, T.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

13.

Deuterium Oxide for Aqueous SEC

BARTH A N D REGNIER

211

TABLE I I . ELUTION CHARACTERISTICS OF D 0 AND GLUCOSE ON SYNCHROPAK COLUMNS* 2

Pore Diameter D 0, V (ml) Glucose, V (ml) Δ, ml V | , ml** Micropore volume, %*** 2

ÎOOA 2.58 2.34 +0.24 1.38 17.4+1.7

r

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 11, 2015 | http://pubs.acs.org Publication Date: March 30, 1984 | doi: 10.1021/bk-1984-0245.ch013

r

300& 2.82 2.68 +0.14 1.66 8.4+1.5

*

4000A 2.62 2.60 +0.02 1.47 1.4+1.7

Chromatographic c o n d i t i o n s : Mobile phase: H 0; Flow: 0.5 ml/min; Chart Speed: 1 in/min; Volume i n j e c t e d : 2 0 u l ; Sample c o n c e n t r a t i o n s : 1 mg/ml glucose and 5% D 0; Columns: 25 cm χ 4.1 mm ID; RI d e t e c t o r s e n s i t i v i t y : X4. ** i = V - V where V i s the e l u t i o n volume of D 0. For 4000Â columns, V = 0.35 (*»r L). For 100 and 300Â columns, V was obtained from 2 χ 1 0 d a l t o n dextran (1.20 and 1.16 m l , r e s p e c t i v e l y ) . *** Propagated e r r o r assuming flow r a t e p r e c i s i o n of + 1%. 2

2

v

T

0

T

2e

2

0

6

Q

TABLE I I I . ELUTION CHARACTERISTICS OF D 0 AND GLUCOSE ON GYCERYL ·- CPG COLUMNS* 2

Pore Diameter D 0, V ( m l ) Glucose, V (ml) Δ, ml V|, ml** Micropore volume, %*** 2

lOOOA 14.25 14.15

21a 5.75 5.65

r

1400Â 14.20 14.18

2000Â 13.70 13.65

3000Â 13.38 13.30

r

0.10 2.15 4.6+2,,7

0.02 8.38 0.2+1. 7

0.10 8.43 1.2+1.7

0.05 7.88 0.6+1..8

*

0.08 7.56 1+1.8

Chromatographic c o n d i t i o n s : Mobile phase: 0.5 M NaOAc; Flow: 0.5 ml/min; Chart Speed: 0.5 cm/min; Volume i n j e c t e d : ΙΟΟμΙ; Sample c o n c e n t r a t i o n s : 2 mg/ml glucose (X4) and 5% D 0 (X8); Columns : 100 cm χ 4.6 mm ID (50 cm χ 4.6 cm ID f o r 75Â); Pump: A l t e x 110A. ** V| a V - V where V i s the e l u t i o n volume of D 0. For 1000, 1400, 2000 and 3000Â columns, V » 0.35 (tTT «L). For 75Â columns, V was obtained from 2 χ 1 0 d a l t o n dextran. *** Propagated e r r o r assuming flow r a t e p r e c i s i o n of + 1%. 2

T

0

T

2

0

2

0

6

In Size Exclusion Chromatography; Provder, T.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 11, 2015 | http://pubs.acs.org Publication Date: March 30, 1984 | doi: 10.1021/bk-1984-0245.ch013

212

SIZE EXCLUSION CHROMATOGRAPHY

Mercury porosimetry data o f these packings are given i n Table IV. I t i s o f i n t e r e s t t o note t h a t the p o r e - s i z e d i s t r i ­ b u t i o n o f CPG i s s i g n i f i c a n t l y more narrow than t h a t of Syn­ Chropak, a s u r f a c e - m o d i f i e d porous s i l i c a ( L i C h r o s p h e r ) . These d i f f e r e n t p h y s i c a l c h a r a c t e r i s t i c s may help t o e x p l a i n the e x i s ­ tence o f micropores i n SynChropak. Because of the wide p o r e - s i z e d i s t r i b u t i o n o f t h i s packing, i t seems reasonable t h a t t h i s m a t e r i a l a l s o contains a p o p u l a t i o n of micropores which are only a c c e s s i b l e t o D2O. I n mercury porosimetry measurements, the lower pore s i z e l i m i t i s about 30*.

TABLE IV. PHYSICAL CHARACTERISTICS OF SEC PACKINGS FROM MERCURY POROSIMETRY

Support Pore SynChropak (lOym diam.) Glyceryl-CPG (37~74um diam. ) 1000* 3000* Diameter 100* 75* 1000* 4000* Pore-size d i s ­ tribution,μπι Dead-end volume, cc/g V|, cc/g* V , cc/g** Surface area, m /g 0

0.00440.06 1.66

0.020.30 1.55

0.140.9 0.84

0.0060.009 0.125

0.090.18 0

0.250.35 0

0.92 1.10 294

0.96 1.10 48.4

0.82 1.25 12.0

0.33 0.90 181

1.35 1.65 50

0.89 1.4 9.5

z

* **

Pore volume I n t e r s t i t i a l volume (measured t o 100 p s i )

Comparison of surface areas as determined by the BET and t-curve methods (21) i s another measure o f m i c r o p o r o s i t y s i n c e the l a t t e r technique w i l l estimate the surface area o f pores under 15* i n diameter. A SynChropak GPC-100 sample gave 201 m /g by the BET method and 216 m /g by the t-curve method. The 15 m /g d i f f e r e n c e i s a t t r i b u t e d t o micropores l e s s than 15*. I n c o n t r a s t , 75* pore diameter Glycophase CPG was found t o have 137 m /g o f surface area by both the BET and t-curve methods i n d i c a t i n g the absence o f micropores. Dead-end volume i s estimated from mercury porosimetry by measuring the amount o f mercury l i b e r a t e d from the packing when the a p p l i e d pressure i s r e l e a s e d . This measurement approximates the volume occupied by b l i n d channels o r pockets w i t h i n the i n t e r s t i t i a l and pore volumes. Assuming t h a t the i n t e r s t i t i a l volume o f the bed c o n s i s t s t o t a l l y o f b l i n d channels, then the minimum percentage o f dead-end volume w i t h i n the pores of the packing i s 61 and 47%, r e s p e c t i v e l y , f o r the 100 and 1000* 2

2

2

2

In Size Exclusion Chromatography; Provder, T.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

13.

Deuterium Oxide for Aqueous

BARTH AND REGNIER

213

SEC

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 11, 2015 | http://pubs.acs.org Publication Date: March 30, 1984 | doi: 10.1021/bk-1984-0245.ch013

SynChropak m a t e r i a l s . The minimum percentage of dead-end pores w i t h i n the 4000Â SynChropak i s 0%. Because of the much l a r g e r p a r t i c l e diameter of the CP6 packings, one would expect that b l i n d channels w i t h i n the packed bed would be n e g l i g i b l e . I n view of t h i s , the 75Â CPG packing would have a maximum of 38% of dead-end volume. The 1000 and 3000Â CPG packings have no dead-end pores. The i m p l i c a t i o n of these f i n d i n g s i n terms of column e f f i c i e n c y w i l l be presented i n a f u t u r e paper (23). E f f e c t of Flow Rate on E l u t i o n Volume of D2O and Glucose. I n order t o r u l e out the p o s s i b i l i t y that the increased r e t e n t i o n volume of D 0 was caused by deuterium exchange on e i t h e r r e s i d u a l s i l a n o l groups on the packing or h y d r o x y l groups on the g l y c e r y l p r o p y l s i l y l s t a t i o n a r y phase, the e l u t i o n volume of DHO was determined as a f u n c t i o n of flow r a t e . As shown i n F i g u r e 1, there was no s i g n i f i c a n t d i f f e r e n c e i n e l u t i o n volume when the f l o w r a t e was v a r i e d from 0.10 t o 2.0 ml/min (23.4 t o 1.2 minute residence time, r e s p e c t i v e l y ) . For a c o n t r o l , the e l u t i o n volume of glucose i s a l s o given. I t should be emphasized that even i f deuterium exchange were o c c u r r i n g , the r e s u l t i n g H 0 molecules would not be detected. Furthermore, DHO peaks were symmetrical; the absence of a t a i l e d peak i s f u r t h e r c o n f i r m a t i o n t h a t secondary e q u i l i b r i u m was not o c c u r r i n g . 2

2

E f f e c t of D 0 Concentration on E l u t i o n Volume. I f deuterium exchange were o c c u r r i n g , one would a l s o expect t h a t the exchange e q u i l i b r i u m would be dependent on D 0 c o n c e n t r a t i o n . In view of t h i s , 0.625 t o 10% D 0 was i n j e c t e d and the r e s u l t i n g r e t e n t i o n times and peak heights are shown i n Table V. The r e s u l t s c l e a r l y demonstrate that there was no D 0 concen­ t r a t i o n dependency of e i t h e r r e t e n t i o n volume or peak h e i g h t . 2

2

2

2

TABLE V. EFFECT OF INJECTION CONCENTRATION ON PEAK HEIGHT AND RETENTION VOLUME OF D 0* 2

D0 2

Concentration. % 10 5 2.5 1.25 0.625

* **

V r . ml** 2.55 2.52 2.54 2.54 2.54

Height, cm**

DRI A t t e n u a t i o n

14.1 14.2 14.3 14.1 14.2

Chromatographic c o n d i t i o n s : See Table I I , 100Â Average of t r i p l i c a t e 20ul i n j e c t i o n s

16 8 4 2 1 column

In Size Exclusion Chromatography; Provder, T.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

214

SIZE E X C L U S I O N C H R O M A T O G R A P H Y

6M Urea as the Mobile Phase. The only p o s s i b l e p a r t i t i o n i n g mechanism that c o u l d be r e s p o n s i b l e f o r D 0 r e t e n t i o n i s hydrogen bonding to the g l y c e r y l p r o p y l s i l y l s t a t i o n a r y phase which i s h i g h l y u n l i k e l y because of c o m p e t i t i o n between D 0 and the H 0 mobile phase. However, to r u l e t h i s out, D 0 and glucose were chromatographed i n a 6M urea mobile phase u s i n g a 100Â column. The r e s u l t s , given i n Table V I , are s i m i l a r t o the data obtained u s i n g water as the mobile phase (Table I I ) , i n d i c a t i n g t h a t the urea mobile phase had no s i g n i f i c a n t e f f e c t on e l u t i o n volume of D 0. I t i s of importance t o note that i t was d i f f i c u l t to prepare a 5% D 0 s o l u t i o n i n 6M urea so that the c o n c e n t r a t i o n of urea would be i d e n t i c a l t o that of the mobile phase. Because of the high urea content, a r e l a t i v e l y s m a l l d i f f e r e n c e between the urea c o n c e n t r a t i o n i n the i n j e c t e d s o l u t i o n and i n the mobile phase, produced a urea peak. In view of t h i s , the urea content of the i n j e c t e d s o l u t i o n was adjusted to minimize i n t e r f e r e n c e . 2

2

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 11, 2015 | http://pubs.acs.org Publication Date: March 30, 1984 | doi: 10.1021/bk-1984-0245.ch013

2

2

2

2

TABLE V I .

ELUTION OF D 0 2

D 0, V (ml) Glucose, V (ml) Â, ml V|, ml Micropore volume, % 2

r

r

IN 6M UREA*

2.59 2.32 0.27 1.38 19.3+1.7

Chromatographic c o n d i t i o n s : Flow: 1.0 ml/min; Chart speed: 2.5 in/min; 100Â Synchropak column. See Table I I f o r other c o n d i t i o n s .

E f f e c t of Temperature on E l u t i o n Volume. The heat of s o l u t i o n of a s o l u t e (ΔΗ) (heat l o s s when 1 mole of s o l u t e i s t r a n s f e r r e d from the mobile phase to the s t a t i o n a r y phase) i s r e l a t e d to the p a r t i t i o n c o e f f i c i e n t (K) as f o l l o w s : Log Κ « &

0

I*" + C 2.30 RT

(2)

Since K=k* V / V where k* i s the c a p a c i t y f a c t o r [ k ' = ( t - t ) / t ] , t and t are the e l u t i o n times of a r e t a i n e d and unretained peak, r e s p e c t i v e l y , V i s the volume of mobile phase, V i s the volume of s t a t i o n a r y phase and C i s a constant, then M

r

0

8

0

P

0

M

s

In Size Exclusion Chromatography; Provder, T.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

13.

BARTH A N D REGNIER

Deuterium Oxide for Aqueous

SEC

215

f

Thus, ΔΗ can be r e a d i l y determined by p l o t t i n g l o g k versus 1/T. I f ΔΗ i s z e r o , there are no s o l u t e - p a c k i n g i n t e r ­ a c t i o n s other than an entropie c o n t r i b u t i o n ( s i z e s e p a r a t i o n ) . S i n c e , by d e f i n i t i o n , k* > 1, the r e t e n t i o n time of glucose was used f o r t and the r e t e n t i o n time of D 0 was used f o r t . The r e t e n t i o n times of glucose and D 0 as a f u n c t i o n of column temperature using a 300Â SynChropak column are i n Table V I I . As i n d i c a t e d , the percent d i f f e r e n c e i n r e t e n t i o n time between D 0 and glucose was about 4.5% f o r a l l temperatures. These r e s u l t s were c l o s e to the 5.2% d i f f e r e n c e obtained from Table I I . The s m a l l e r value obtained i n t h i s study was probably caused by d i f f e r e n c e s i n the two l o t s of s i l i c a used i n the colums. 0

2

r

2

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 11, 2015 | http://pubs.acs.org Publication Date: March 30, 1984 | doi: 10.1021/bk-1984-0245.ch013

2

TABLE V I I . TIME OF D 0 2

EFFECT OF COLUMN TEMPERATURE ON THE ELUTION AND GLUCOSE USING A 300* SYNCHROPAK COLUMN*

Column Temp. *C P r e s s u r e , p s i Glucose 29 420 6.512 39 348 6.496 49 290 6.468 60 246 6.436 70 218 6.422

t r . min E^O D i f f e r e n c e . % k*. D 0 6.802 4.4 0.0445 6.776 4.3 0.0431 6.752 4.4 0.0439 6.732 4.6 0.0459 6.712 4.5 0.0451 2

Chromatographic c o n d i t i o n s : Mobile phase: H 0; Flow: 0.5 ml/min; Chart Speed: 5 cm/mi η ; Volume i n j e c t e d : 2 0 u l ; Sample c o n c e n t r a t i o n s : 1.3 mg/ml glucose and 5% D 0; Detector: RI X8; Column: 25cm χ 4.6mm ID SynChropak 300*. 2

2

The decrease i n s o l u t e r e t e n t i o n time w i t h column tempera­ t u r e was caused i n p a r t by the expansion of mobile phase as i t entered the heated column. For example, there was a 1.3-1.4% increase i n f l o w r a t e when the temperature was increased from 29 to 70 C. The p r e d i c t e d value based on the expansion c o e f f i c i e n t of water i s 0.8%. As shown i n Table V I I there appears to be no s i g n i f i c a n t change of k w i t h respect to temperature. These data were p l o t t e d using Equation 3 and from l i n e a r r e g r e s s i o n a n a l y s i s , the heat of s o l u t i o n was +0.18 Kcal/mole. Since ΔΗ should be negative, t h i s low value i s o b v i o u s l y caused by experimental e r r o r . Furthermore, the ΔΗ c a l c u l a t e d from the standard e r r o r of the estimate (+1 standard d e v i a t i o n u n i t s ) of the l i n e a r r e g r e s s i o n l i n e i s ±0.17 Kcal/mole. Since ΔΗ i s zero or i s very c l o s e to z e r o , Equation 3 reduces to e

f

log k

f

- C

f

In Size Exclusion Chromatography; Provder, T.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

(4)

SIZE E X C L U S I O N C H R O M A T O G R A P H Y

216

and the f r e e energy change when DHO i s t r a n s f e r r e d from the mobile phase to the s t a t i o n a r y phase i s of the form G^TâS. Thus the r e t e n t i o n time of D 0 i s caused by e n t r o p i e r a t h e r than e n t h a l p i c i n t e r a c t i o n s w i t h the packing. These r e s u l t s c o n f i r m that the e x i s t e n c e of micropores must be r e s p o n s i b l e f o r the d i f f e r e n c e i n e l u t i o n volume between glucose and D 0. The e f f e c t of temperature on column e f f i c i e n c y i s a l s o shown i n F i g u r e 2. As expected, the number of t h e o r e t i c a l p l a t e s generated by D 0 was s i g n i f i c a n t l y g r e a t e r than f o r glucose because of i t s higher d i f f u s i o n c o e f f i c i e n t . The temperature dependency of glucose appears to be s i g n i f i c a n t l y g r e a t e r than f o r D 0. For example, a column temperature change from 29 t o 70*C, r e s u l t s i n a 50% i n c r e a s e i n e f f i c i e n c y f o r glucose as compared to only 10% f o r D 0. Since the r e l a t i o n s h i p between temperature and d i f f u s i o n c o e f f i c i e n t i s l i n e a r as p r e d i c t e d by the WiIke-Chang equation, one would expect a much higher p l a t e count f o r D 0. A p o s s i b l e e x p l a n a t i o n f o r these r e l a t i v e l y low values f o r D 0 c o u l d be d i s r u p t i o n of the packed column bed at e l e v a t e d temperatures which would a f f e c t the narrower D 0 peak more than the glucose peak. 2

2

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 11, 2015 | http://pubs.acs.org Publication Date: March 30, 1984 | doi: 10.1021/bk-1984-0245.ch013

2

2

2

2

2

2

Conclusions From these s t u d i e s w i t h SynChropak SEC packings and c o n t r o l l e d p o r o s i t y g l a s s , i t i s concluded that the s i l i c a packing c o n t a i n s a p o p u l a t i o n of micropores which are d i f f e r e n t i a l l y a c c e s s i b l e t o low molecular weight probes of t o t a l permeation volume. I t i s not known, however, i f the m i c r o p o r o s i t y i n the 100 and 300Â SynChropak SEC packings i s the r e s u l t of the r a t h e r wide pores i z e d i s t r i b u t i o n and whether a l l s i l i c a s c o n t a i n micropores. The e x i s t e n c e of micropores i n a SEC packing and the f r a c t i o n a t i o n of low molecular weight probes presents a dilemma as to what should be used as V i n c a l c u l a t i n g K of high molecular weight s p e c i e s . I t i s recommended t h a t the c o r r e s ­ ponding monomer (except i n the case of p r o t e i n s ) be used when c o n s t r u c t i n g a c a l i b r a t i o n curve f o r a given polymer. For example, i n the case of c e l l u l o s i c s , glucose would be the low molecular weight c a l i b r a n t of c h o i c e . D 0 i s best used t o determine column e f f i c i e n c y because of i t s s e n s i t i v i t y toward chromatographic peak broadening and extracolumn e f f e c t s ( 2 3 ) . However D 0 may s t i l l be used to estimate V? i n some cases. In view of Freeman*s s t u d i e s on the use of normal alkanes and p o l y s t y r e n e s to probe the macroporosity of porous m a t e r i a l s ( 2 4 ) , the r e s u l t s presented here would suggest t h a t low molecu­ l a r weight species ranging from twenty (deuterium oxide) t o s e v e r a l thousand d a l t o n s may be used to d e f i n e m i c r o p o r o s i t y of a SEC support. The ease w i t h which t h i s i s achieved may a l l o w r o u t i n e examination of m i c r o p o r o s i t y i n new support m a t e r i a l s and a more exact d e f i n i t i o n of t o t a l permeation volume i n SEC. T

D

2

2

In Size Exclusion Chromatography; Provder, T.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

BARTH A N D REGNIER

Deuterium Oxide for Aqueous SEC

217

3.0 r

D 0 2

»GLUCOSE 2.0 -

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 11, 2015 | http://pubs.acs.org Publication Date: March 30, 1984 | doi: 10.1021/bk-1984-0245.ch013

1.0 -

0.2

0.4

0.6

0.8

1.0

1.2

1.4

FLOW R A T E ,

1.6

1.8

2.0

ml/min

Figure 1. Influence o f flow r a t e on e l u t i o n volume o f D 0 and glucose. The column was a SynChropak 100* column. See Table I I f o r c o n d i t i o n s . 2

11,000

9,000 CO LU

* GLUCOSE

t—

< _J

^

7,000

£

5,000

ο LU DC

I— 3,000

1,000

10

20

30

40

50

60

70

COLUMN TEMPERATURE, °C

Figure 2. Influence o f temperature on column e f f i c i e n c y using a SynChropak 300* column. See Table V I I f o r conditions.

In Size Exclusion Chromatography; Provder, T.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

SIZE E X C L U S I O N C H R O M A T O G R A P H Y

218

Acknowledgments The h e l p f u l d i s c u s s i o n s w i t h Walter J . Freeman and the e x c e l l e n t t e c h n i c a l a s s i s t a n c e o f David A l l e n Smith are appreciated. We a l s o thank James F. Carre f o r p r o v i d i n g and i n t e r p r e t i n g the porosimetry and BET data.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 11, 2015 | http://pubs.acs.org Publication Date: March 30, 1984 | doi: 10.1021/bk-1984-0245.ch013

Literature Cited 1. Bio-Rad Laboratories "A Laboratory Manual on Gel Chromatography"; Richmond, CA, 1971. 2. Karch, K.; Sebestion, I.; Halasz, I.; Engelhardt, H. J. Chromatogr. 1976, 122, 171. 3. Rochas, C.; Domard, A.; Rinaudo, M. Eur. Polym. J. 1980, 16, 135. 4. Marsden, N.V.B. Ann. Ν. Y. Acad. Sci. 1965, 125. 428. 5. Yoza, N.; Ohashi, S. J. Chromatogr. 1969, 41, 429. 6. Ohashi, S.; Yoza, N. J. Chromatogr. 1966, 24, 300. 7. Obrink, B.; Laurent, T.C.; Rigler, R. J. Chromatogr. 1967. 31, 48. 8. Marsden, N.V.B. J. Chromatogr. 1971, 58, 304. 9. Barth, H.G.; Regnier, F.Ε. J. Chromatogr. 1980, 192, 275. 10. Barth, H.G. J. Liq. Chromatogr. 1980, 3, 1481. 11. Barth, H.G.; Smith, D.A. J. Chromatogr. 1981, 206. 410. 12. Neidhart, B.; Kringe, K.P.; Brockmann, W. J. Liq. Chromatogr. 1981, 4, 1875. 13. Grushka, E.; Colin, H.; Guiochon, G. J. Liq. Chromatogr. 1982, 5, 1391. 14. Neidhart, B.; Kringe, K.P.; Brockmann, W. J. Liq. Chromatogr. 1982, 5, 1395. 15. McCormick, R.M.; Karger, B.L. Anal. Chem. 1980, 52, 2249. 16. Berendsen, G.E.; Schoenmakers, P.J.; Galen L.D.; Vigh, G.; Puchory, Z.V.; Inczecly, J. J. Liq. Chromatogr. 1980, 3, 1669. 17. Slaats, E.H.; Markovski, W.; Fekete, J.; Poppe, H. J. Chromatogr. 1981, 207, 299. 18. Kristulovic, A.M.; Colin, H.; Guichon, G. Anal. Chem. 1982, 54. 2438. 19. Billet, H.A.H.; van Dalen, J.P.J.; Schoenmakers, Ρ.J.; Galan, L.D. Anal. Chem. 1983, 55, 847. 20. Snyder, L.R.; Kirkland, J.J. "Introduction to Modern Liquid Chromatography"; J. Wiley and Sons: New York, 1979; p. 207. 21. Lippens, B.C.; Linsen, B.G.; de Boer, J.H. J. Catalysts 1964, 3, 32. 22. Unger, K.K. "Porous Silica"; Elsevier Scientific Publishing Co.: Amsterdam, 1979. 23. Barth, H.G., results to be published. 24. Freeman, D.H.; Poinescu, I.C. Anal. Chem. 1977, 49, 1183. RECEIVED

December 20, 1983

In Size Exclusion Chromatography; Provder, T.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.