Supercritical Fluid Extraction and Chromatography - American


Supercritical Fluid Extraction and Chromatography - American...

1 downloads 121 Views 1MB Size

Chapter 6 Supercritical Carbon Dioxide Extraction of Terpenes from Orange Essential Oil F . Temelli , R. J. Braddock , C. S. Chen , and S. Nagy Downloaded by UNIV OF SOUTHERN CALIFORNIA on July 26, 2013 | http://pubs.acs.org Publication Date: March 17, 1988 | doi: 10.1021/bk-1988-0366.ch006

1

1

1

2

Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850 Department of Citrus, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850

1

2

This report reviews the recovery, composition and folding of cold-pressed orange oil and discusses the application of supercritical fluid extraction technology in this field. Supercritical carbon dioxide extraction is a suitable low-temperature alternative process to distillation for separating terpene hydrocarbons from the oxygenates in cold-pressed citrus oils. Citrus essential oils are important flavoring agents for the food industry. The oxygenated compounds are responsible for the characteristic citrus flavor. The terpene hydrocarbons are the major components; however, in some applications they are detrimental to flavor and aroma. Terpene hydrocarbons are unsaturated compounds and are readily decomposed by heat, light and oxygen. To obtain a more stable product, some terpenes are generally removed by distillation. However, heating during distillation results in development of some off-flavors. Matthews and Braddock (1) have e s t i m a t e d a p o t e n t i a l y i e l d i n F l o r i d a o f 13,800 tons o f orange o i l f o r the 1984-85 s e a s o n . However, i t has been e s t i m a t e d t h a t a c t u a l c o l d - p r e s s e d orange o i l p r o d u c t i o n i s o n l y about 20% o f the p o t e n t i a l w i t h a n o t h e r 25-30% r e c o v e r e d as d - l i m o n e n e ( 2 ) · C i t r u s o i l s a r e used i n a wide v a r i e t y o f a p p l i c a t i o n s i n many major i n d u s t r i e s which i n c l u d e f l a v o r , b e v e r a g e , f o o d , c o s m e t i c s , s o a p , p h a r m a c e u t i c a l , c h e m i c a l and i n s e c t i c i d e . The most i m p o r t a n t o u t l e t i s the f l a v o r i n d u s t r y . The major component, d - l i m o n e n e , i s used f o r the manufacture o f m a t e r i a l s l i k e s p e a r m i n t o i l f l a v o r , 1 - c a r v o n e , t e r p e n e r e s i n s and a d h e s i v e s . C i t r u s o i l i s p r e s e n t i n s m a l l g l a n d s c o n t a i n e d i n the f l a v e d o , which i s the c o l o r e d p o r t i o n o f the p e e l o f the f r u i t . Cold-pressed c i t r u s p e e l o i l i s o b t a i n e d c o m m e r c i a l l y by a p r o c e s s t h a t s t a r t s w i t h the r u p t u r e o f t h e s e g l a n d s d u r i n g j u i c e e x t r a c t i o n . For i t s r e c o v e r y , the o i l i s washed away from the p e e l w i t h water f o r m i n g an 0097-6156/88/0366-0109$06.00/0 © 1988 American Chemical Society

In Supercritical Fluid Extraction and Chromatography; Charpentier, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

Downloaded by UNIV OF SOUTHERN CALIFORNIA on July 26, 2013 | http://pubs.acs.org Publication Date: March 17, 1988 | doi: 10.1021/bk-1988-0366.ch006

110

SUPERCRITICAL FLUID EXTRACTION AND C H R O M A T O G R A P H Y

oil-water emulsion. I t i s i m p o r t a n t to m a i n t a i n an e x c e s s o f water to p r e v e n t t h e o i l from b e i n g r e a b s o r b e d by the p e e l once i t i s released. A t w o - s t a g e c e n t r i f u g a t i o n p r o c e s s i s used to r e c o v e r orange o i l from t h e o i l - w a t e r e m u l s i o n . The f i r s t s t a g e i s c a l l e d a d e s l u d g e r and i t s output c o n t a i n s 60-80% o i l . The p o l i s h e r i s the second s t a g e c e n t r i f u g e and c o n t i n u o u s l y d i s c h a r g e s t h e pure orange o i l and i n t e r m i t t e n t l y d i s c h a r g e s an aqueous w a s t e . Cold-pressed o i l i s w i n t e r i z e d a t - 2 9 ° C , 3-5 days o r a t - 4 ° C , 4-5 weeks t o remove waxes which c o u l d produce a c l o u d y appearance i n the f i n a l p r o d u c t . Dewaxed o i l s s h o u l d be s t o r e d a t 1 5 - 2 2 ° C , under an i n e r t gas atmosphere. K e s t e r s o n and Braddock ( 3 ) , and K e s t e r s o n e t a l . (^) have d i s c u s s e d the p r o d u c t i o n , p h y s i c a l p r o p e r t i e s o f t h e c i t r u s o i l s , and the parameters a f f e c t i n g them. Composition o f Peel O i l s C i t r u s , l i k e many o t h e r e s s e n t i a l o i l s , c o n s i s t s o f m i x t u r e s o f h y d r o c a r b o n s o f t h e ' t e r p e n e * and ' s e s q u i t e r p e n e ' g r o u p s , oxygenated compounds and n o n v o l a t i l e r e s i d u e s . Terpenes make up a p p r o x i m a t e l y 95% by weight o f orange o i l s w h i l e t h e oxygenated compounds c o n s t i t u t e the r e m a i n i n g 5%. The c o m p o s i t i o n s o f c i t r u s o i l s have been s t u d i e d e x t e n s i v e l y by d i f f e r e n t r e s e a r c h e r s ( 5 - 9 ) . Citrus t e r p e n e s ( C H ) a r e m o s t l y u n s a t u r a t e d a c y c l i c and c y c l i c compounds d e r i v e d from t h e c o n d e n s a t i o n o f two 5 - c a r b o n i s o p r e n e units. S e s q u i t e r p e n e s have the g e n e r a l f o r m u l a C H » Advances i n i n s t r u m e n t a l a n a l y s i s , e . g . g a s chromatography and mass s p e c t r o s c o p y , have made i t p o s s i b l e to i d e n t i f y more than 150 compounds i n c o l d - p r e s s e d c i t r u s o i l s . Shaw (10-11) has e x t e n s i v e l y reviewed the q u a l i t a t i v e and q u a n t i t a t i v e a n a l y s e s o f c i t r u s essential o i l s . The terpene f r a c t i o n , made up m a i n l y o f limonene has l i t t l e c o n t r i b u t i o n t o the f l a v o r o r f r a g r a n c e o f t h e o i l . M o r e o v e r , s i n c e i t s make up i s m o s t l y u n s a t u r a t e d compounds, t h i s f r a c t i o n e x h i b i t s i n s t a b i l i t y to heat and l i g h t , and i s r a p i d l y o x i d i z e d by a t m o s p h e r i c o x y g e n , c o n s e q u e n t l y decomposing to u n d e s i r a b l e compounds. The mechanism o f o x i d a t i o n o f limonene and the f a c t o r s a f f e c t i n g i t have been s t u d i e d by B u c k h o l z and Daun (12) , Bernhard and Marr (13) and Newhall and K e s t e r s o n ( 1 4 ) . Oxygenated compounds a r e h i g h l y o d o r i f e r o u s and a r e the p r i n c i p a l odor impact compounds. This flavor f r a c t i o n consists of a l d e h y d e s , a l c o h o l s , k e t o n e s , e s t e r s , e t h e r s and p h e n o l s . The t o t a l a l d e h y d e c o n t e n t o f o i l s i s used as an i n d i c a t o r o f q u a l i t y and t h i s i s measured as d e c a n a l s i n c e i t i s o f t e n the major a l d e h y d e . Aldehyde c o n c e n t r a t i o n i n orange o i l i s g e n e r a l l y about 1.5%. The two major a l d e h y d e s i n orange o i l , o c t a n a l and d e c a n a l , have been q u a n t i t a t e d as 0 . 2 - 2 . 8 % and 0 . 1 - 0 . 7 % , r e s p e c t i v e l y , by d i f f e r e n t workers ( 1 0 ) · The a l c o h o l s i n orange o i l which a r e most i m p o r t a n t to f l a v o r a r e l i n a l o o l , - t e r p i n e o l and t e r p i n e n - 4 - o l . Reported v a l u e s f o r l i n a l o o l range from 0 . 3 - 5 . 3 % o f c o l d - p r e s s e d o i l . Both o r t e r p i n e o l and t e r p i n e n - 4 - o l a r e d e g r a d a t i o n p r o d u c t s o f d - l i m o n e n e and c o u l d be formed i f t h e p e e l o i l i s a l l o w e d to remain i n c o n t a c t w i t h the a c i d i c j u i c e f o r any l e n g t h o f time d u r i n g p r o c e s s i n g . A microbial 1 Q

1 6

1 5

2 l t

a

In Supercritical Fluid Extraction and Chromatography; Charpentier, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

6.

TEMELLI ET AL.

Supercritical

Carbon Dioxide

Extraction

111

d e g r a d a t i o n product of l i m o n e n e , α-terpineol, c o n t r i b u t e s to o f f - f l a v o r i n s t o r e d orange j u i c e ( 1 5 ) . Ketones q u a n t i t a t e d i n orange o i l are c a r v o n e , an o x i d a t i o n product of l i m o n e n e , found a t 0.1% or l e s s , and n o o t k a t o n e , found a t e x t r e m e l y low l e v e l s of < 0.01% of p e e l o i l .

Downloaded by UNIV OF SOUTHERN CALIFORNIA on July 26, 2013 | http://pubs.acs.org Publication Date: March 17, 1988 | doi: 10.1021/bk-1988-0366.ch006

F o l d i n g Processes The i n d u s t r i a l p r a c t i c e o f f o l d i n g i s to remove some of the limonene along w i t h o t h e r u n s t a b l e t e r p e n e s and to c o n c e n t r a t e the oxygenated compounds. T h i s p r o c e s s o f f o l d i n g the o i l r e s u l t s i n a more s t a b l e p r o d u c t . F i v e - and t e n - f o l d o i l s which are c o n c e n t r a t e d to o n e - f i f t h or o n e - t e n t h o f o r i g i n a l weight are the most common products. H i g h e r c o n c e n t r a t i o n s l o s e the n a t u r a l c h a r a c t e r o f the c i t r u s due to absence of t e r p e n e s which do, n o n e t h e l e s s , c o n t r i b u t e some f l a v o r n o t e s . An advantage o f f o l d i n g i s the r e d u c t i o n o f water i n s o l u b l e terpenes w h i c h may produce an u n a e s t h e t i c ' r i n g * a t the neck o f the s o f t d r i n k b o t t l e s e v i d e n t when u n f o l d e d c o l d - p r e s s e d o i l i s used. F o l d e d o i l s are a l s o p r e f e r r e d i n f l a v o r i n g food p r o d u c t s t h a t w i l l be heated and i n beverages where limonene and o x i d a t i o n p r o d u c t s might be o b j e c t i o n a b l e . An o b v i o u s advantage o f f o l d e d o i l s i s a r e d u c t i o n i n s t o r a g e and t r a n s p o r t a t i o n c o s t s due to reduced volumes. Vacuum d i s t i l l a t i o n , steam d i s t i l l a t i o n , e x t r a c t i o n w i t h s o l v e n t s , and a d s o r p t i o n p r o c e s s e s are used f o r f o l d i n g c o l d - p r e s s e d oils. How each a f f e c t s the q u a l i t y o f the f o l d e d o i l w i l l be b r i e f l y described. In T a b l e I , the b o i l i n g r a n g e , a t a t m o s p h e r i c p r e s s u r e , o f t e r p e n e s v a r i e s from 150 to 180°C and t h a t o f s e s q u i t e r p e n e s between 240 and 280°C; the b o i l i n g p o i n t s o f most oxygenated compounds l i e between those o f terpenes and s e s q u i t e r p e n e s . This d i f f e r e n c e i n b o i l i n g p o i n t s i s used to s e p a r a t e them by d i s t i l l a t i o n . However, the temperature must be kept as low as p o s s i b l e w i t h the a i d o f vacuum ( 1 6 ) . Time, temperature and vacuum have major e f f e c t s on the q u a l i t y and y i e l d . Losses o c c u r i n the aldehyde f l a v o r f r a c t i o n as the l e v e l o f f o l d i n g i n c r e a s e s ( 1 7 ) . S p e c i f i c g r a v i t y , r e f r a c t i v e i n d e x , o p t i c a l r o t a t i o n , aldehyde v a l u e , e s t e r v a l u e and g a s - l i q u i d chromatogram response change l i n e a r l y w i t h c o n c e n t r a t i o n d u r i n g vacuum d i s t i l l a t i o n o f c i t r u s o i l s and t h i s c o u l d be used as an o b j e c t i v e e v a l u a t i o n of the degree of f o l d i n g ( 1 8 ) . Vora e t a l . (19) c o n c e n t r a t e d orange o i l by vacuum d i s t i l l a t i o n (57-62°C; 1.3 k P a ) , and gave a q u a n t i t a t i v e a n a l y s i s of the c o n s t i t u e n t s . D u r i n g steam d i s t i l l a t i o n orange o i l i s exposed to a r e l a t i v e l y h i g h temperature w h i c h can l e a d t o a r t i f a c t s due to the h y d r o l y t i c i n f l u e n c e o f water. In the p r o c e s s o f e x t r a c t i o n w i t h low b o i l i n g o r g a n i c s o l v e n t s , an i m p o r t a n t c o n s i d e r a t i o n i s the presence o f r e s i d u a l s o l v e n t i n the e x t r a c t . A l s o , e x t r a c t i o n w i t h o r g a n i c s o l v e n t s does not t o t a l l y e l i m i n a t e t h e r m a l d e g r a d a t i o n s i n c e the s o l v e n t has to be removed by d i s t i l l a t i o n . Owusu-Yaw e t a l . (20) e x t r a c t e d c o l d - p r e s s e d V a l e n c i a orange o i l w i t h aqueous e t h y l a l c o h o l t o remove the t e r p e n e s and s e s q u i t e r p e n e s . The r a t i o 1:3 o f o i l : s o l v e n t r e s u l t e d i n s e s q u i t e r p e n e l e s s o i l s w i t h a low terpene content. However, t h i s r a t i o a l s o gave low o i l r e c o v e r i e s .

In Supercritical Fluid Extraction and Chromatography; Charpentier, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

SUPERCRITICAL FLUID EXTRACTION AND C H R O M A T O G R A P H Y

112

Downloaded by UNIV OF SOUTHERN CALIFORNIA on July 26, 2013 | http://pubs.acs.org Publication Date: March 17, 1988 | doi: 10.1021/bk-1988-0366.ch006

Table I:

Formula, Molecular Weight, and Boiling Point of Compounds Present in Cold- •Pressed Orange Oil

Compound

Peak No.

α-pinene

1

Sabinene

2

C

Octanal

3

C

Myrcene

4

C

Phellandrene

5

10 16

C

d-1imonene

6

10 16

C

7

10 16

1-octanol Nonanal

8

Linalool

9

C

Citronel1al

10

10 18°

C

α-terpineol

11

10 18°

C

Decanal

12

10 18°

C

Neral

13

10 20°

C

Geranial

14

10 16°

C

P e r i l 1 aldehyde

15

10 16°

C

Undecanal

16

10 14°

C

11 22°

Dodecanal

17

$-caryophyllene

18

Formula C

Boiling Point(°C)

136

155

10 16

136

149

8 16°

128

172

136

166

136

171

10 16 H

H

H

H

H

H

8 18° C H 0

C

H

g

C

Molecular Weight

18

H

H

H

H

H

H

H

H

12 24° H

C

15 24

C

15 24

H

3-copaene

19

3-farnesene

20

Valencene

21

3-sinensal

22

C

α-sinensal

23

15 22°

C

Nootkatone

24

15 22°

C

15 22°

H

C

15 24

C

15 24

H

H

H

H

H

136

177

130

195

142

185

154

209

154

203

154

220

156

208

152

224

152

230

150

236

170

117

184

231

204

288

204

119

204

121

204 218 218 218

In Supercritical Fluid Extraction and Chromatography; Charpentier, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

6. T E M E L L I E T A L .

Supercritical

Carbon Dioxide

Extraction

113

T e r p e n e l e s s and s e s q u i t e r p e n e l e s s o i l s have been p r e p a r e d by a d s o r p t i o n on s i l i c i c a c i d which i s f o l l o w e d by e l u t i n g the t e r p e n e s w i t h hexane and oxygenated compounds w i t h e t h a n o l ( 2 1 - 2 3 ) . The drawbacks o f a l l t h e p r o c e s s e s d i s c u s s e d a r e low y i e l d s , f o r m a t i o n o f d e g r a d a t i o n p r o d u c t s , a n d / o r the removal o f s o l v e n t s .

Downloaded by UNIV OF SOUTHERN CALIFORNIA on July 26, 2013 | http://pubs.acs.org Publication Date: March 17, 1988 | doi: 10.1021/bk-1988-0366.ch006

Supercritical

Fluid Extraction

S u p e r c r i t i c a l f l u i d e x t r a c t i o n p r o c e s s e s have g a i n e d i n c r e a s i n g importance i n t h e c h e m i c a l and food i n d u s t r i e s i n r e c e n t y e a r s , s i n c e i n many a p p l i c a t i o n s p r o d u c t r e c o v e r y and q u a l i t y can be maximized w h i l e m i n i m i z i n g e n e r g y r e q u i r e m e n t s . Even though s c i e n t i s t s , s i n c e the l a t e 1 8 0 0 s , knew t h e enhanced s o l v a t i n g power o f many g a s e s above t h e i r c r i t i c a l p o i n t s , i t was n o t u n t i l r e c e n t l y t h a t s u p e r c r i t i c a l f l u i d s have been the focus o f a c t i v e r e s e a r c h . C o n s e q u e n t l y , a l a r g e number o f r e v i e w papers have been p u b l i s h e d ( 2 4 - 2 9 ) , and the f e a s i b i l i t y o f d i f f e r e n t a p p l i c a t i o n s o f the p r o c e s s i n the food i n d u s t r y has been i n v e s t i g a t e d . Some o f t h e s e a p p l i c a t i o n s a r e d e c a f f e i n a t i o n o f c o f f e e and t e a ( 2 7 - 2 9 ) , e x t r a c t i o n o f o i l from v e g e t a b l e seeds (30-34) , removal o f n i c o t i n e from tobacco ( 3 5 ) , and p r o d u c t i o n o f hop ( 3 5 - 3 7 ) and s p i c e (35) extracts. I n c r e a s e d c o s t o f e n e r g y , t i g h t e n i n g government r e g u l a t i o n s on s o l v e n t r e s i d u e s and i n c r e a s e d demand f o r h i g h e r q u a l i t y p r o d u c t s a r e some o f t h e m o t i v a t i o n s g i v e n f o r u t i l i z i n g s u p e r c r i t i c a l f l u i d technology. The a v a i l a b i l i t y o f i n e x p e n s i v e e n e r g y , poor u n d e r s t a n d i n g o f the thermodynamics r e q u i r e d t o d e s c r i b e o r p r e d i c t such p r o c e s s e s , h i g h c a p i t a l c o s t s a s s o c i a t e d w i t h p l a n t s t a r t - u p and o p e r a t i o n , and an absence o f e n g i n e e r i n g d a t a f o r s c a l e - u p t e c h n o l o g y a r e f a c t o r s t h a t have been c i t e d to e x p l a i n t h e l i m i t e d a c c e p t a n c e o f s u p e r c r i t i c a l p r o c e s s e s to t h i s date. S u p e r c r i t i c a l e x t r a c t i o n p r o v i d e s some d i s t i n c t advantages o v e r other separation techniques: t h e r m a l l y u n s t a b l e compounds c a n be s e p a r a t e d a t l o w t e m p e r a t u r e s ; t h e s o l v e n t can be removed e a s i l y from t h e s o l u t e by r e d u c i n g t h e p r e s s u r e a n d / o r a d j u s t i n g t h e t e m p e r a t u r e ; t h e r m a l energy r e q u i r e m e n t s a r e lower than t h a t f o r d i s t i l l a t i o n ; s u r p r i s i n g l y h i g h s e l e c t i v i t i e s f o r t h e s o l u t e c a n be a c c o m p l i s h e d ; r a p i d e x t r a c t i o n c a n be a c h i e v e d due t o low v i s c o s i t y , h i g h d i f f u s i v i t y and good s o l v a t i n g power o f the s u p e r c r i t i c a l f l u i d solvent. Carbon d i o x i d e as a s u p e r c r i t i c a l f l u i d s o l v e n t i s a t t r a c t i v e s i n c e i t i s n o n t o x i c , nonflammable, i n e r t , r e a d i l y a v a i l a b l e i n h i g h p u r i t y , i n e x p e n s i v e , has low s u r f a c e t e n s i o n and v i s c o s i t y , and h i g h d i f f u s i v i t y . f

Factors Affecting

Solubility i n Supercritical Fluids

Solute P h y s i c a l P r o p e r t i e s . Vapor p r e s s u r e , p o l a r i t y and m o l e c u l a r weight a r e t h e most i m p o r t a n t f a c t o r s a f f e c t i n g t h e s o l u b i l i t y o f compounds i n a s u p e r c r i t i c a l f l u i d . Vapor p r e s s u r e v e r s u s t e m p e r a t u r e c u r v e s o f some c o l d - p r e s s e d orange o i l components a r e g i v e n i n F i g u r e 1 ( d a t a from ( 3 8 ) ) . The terpene h y d r o c a r b o n s have the h i g h e s t vapor p r e s s u r e s . Vapor p r e s s u r e o f limonene i s 4.3 times g r e a t e r than t h a t o f l i n a l o o l a t 5 0 ° C , and 4.7 times a t 4 0 ° C . L i n a l o o l i s t h e compound w i t h t h e h i g h e s t v a p o r p r e s s u r e among t h e

In Supercritical Fluid Extraction and Chromatography; Charpentier, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

114

SUPERCRITICAL FLUID EXTRACTION AND CHROMATOGRAPHY

Downloaded by UNIV OF SOUTHERN CALIFORNIA on July 26, 2013 | http://pubs.acs.org Publication Date: March 17, 1988 | doi: 10.1021/bk-1988-0366.ch006

5

.0019

.0021

.0023

.0025

.0027

.0029

.0031

.0033

.0035

.0037

1 /Temperature (K) F i g u r e 1. Vapor p r e s s u r e v s . temperature c u r v e s o f i m p o r t a n t components o f orange e s s e n t i a l o i l : (0~0) a-pinene, ( • - • ) d-limonene, ( Δ - Δ ) myrcene, ( ο - ο ) l i n a l o o l , ( · - · ) α-terpineol, ( • - • ) d e c a n a l , ( A - A ) α-citral (Data from (38)).

In Supercritical Fluid Extraction and Chromatography; Charpentier, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

Downloaded by UNIV OF SOUTHERN CALIFORNIA on July 26, 2013 | http://pubs.acs.org Publication Date: March 17, 1988 | doi: 10.1021/bk-1988-0366.ch006

6.

T E M E L L I E T AL.

Supercritical

Carbon Dioxide

Extraction

115

oxygenated compounds. Other p r o p e r t i e s o f t h e s e compounds a r e summarized i n T a b l e I . The most abundant t e r p e n e h y d r o c a r b o n s a r e a - p i n e n e , s a b i n e n e , myrcene and d - l i m o n e n e . They a l l have a m o l e c u l a r weight o f 136. Sesquiterpene hydrocarbons i n c l u d e 3 - c a r y o p h y l l e n e , 3 - c o p a e n e , 3 - f a r n e s e n e and v a l e n c e n e . Their m o l e c u l a r weight i s 20 4. Oxygenated f l a v o r compounds i n c l u d e aldehydes ( o c t a n a l , n o n a n a l , c i t r o n e l l a l , d e c a n a l , n e r a l , g e r a n i a l , p e r i l l a l d e h y d e , u n d e c a n a l , d o d e c a n a l , a~ and 3 - s i n e n s a l ) , a l c o h o l s ( 1 - o c t a n o l , l i n a l o o l , α - t e r p i n e o l ) and ketones ( n o o t k a t o n e ) . T h e i r m o l e c u l a r weights a r e between 152 and 156. S i n c e c a r b o n d i o x i d e has no d i p o l e moment and has a g r e a t e r a f f i n i t y f o r n o n p o l a r s o l u t e s , t e r p e n e s w h i c h a r e n o n p o l a r , have l e s s m o l e c u l a r weight and a h i g h e r vapor p r e s s u r e , would be more s o l u b l e i n s u p e r c r i t i c a l c a r b o n d i o x i d e t h a n the oxygenated f l a v o r f r a c t i o n . Temperature and P r e s s u r e . S o l v e n t power of a s u p e r c r i t i c a l f l u i d i s d i r e c t l y r e l a t e d to i t s d e n s i t y . In the v i c i n i t y o f the c r i t i c a l p o i n t , l a r g e d e n s i t y changes can be produced w i t h e i t h e r r e l a t i v e l y s m a l l p r e s s u r e o r temperature c h a n g e s . At a g i v e n t e m p e r a t u r e , the s o l v e n t power o r the f l u i d d e n s i t y i n c r e a s e s as the p r e s s u r e i s increased. A r i s e i n t e m p e r a t u r e a t c o n s t a n t p r e s s u r e l e a d s to a decrease i n solvent d e n s i t y . T h i s s t r o n g p r e s s u r e dependence o f the d i s s o l v i n g power o f a s u p e r c r i t i c a l f l u i d i s e x h i b i t e d by a l l s o l i d and many l i q u i d s o l u t e s as l o n g as the s o l u t e i s n o t i n f i n i t e l y m i s c i b l e w i t h the s o l v e n t . T h i s p r e s s u r e dependency i s a key f a c t o r in supercritical fluid extraction. S t a h l and G e r a r d (39) have s t u d i e d the s o l u b i l i t y b e h a v i o r o f c e r t a i n e s s e n t i a l o i l components i n s u p e r c r i t i c a l carbon d i o x i d e . As noted from F i g u r e 2, a l l components e x h i b i t e d some s o l u b i l i t y i n c a r b o n d i o x i d e a t low densities. W i t h i n c r e a s i n g p r e s s u r e above the c r i t i c a l p r e s s u r e o f c a r b o n d i o x i d e ( 7 . 4 M P a ) , t h e gas phase c o n c e n t r a t i o n o f the s o l u t e s increased exponentially. The temperature o f the system was 40°C which i s j u s t above the c r i t i c a l t e m p e r a t u r e o f pure c a r b o n d i o x i d e (31°C). The e f f e c t o f t e m p e r a t u r e on the s o l u b i l i t y o f a s u b s t a n c e i n a s u p e r c r i t i c a l f l u i d changes w i t h p r e s s u r e . At p r e s s u r e s c l o s e t o the c r i t i c a l p o i n t a temperature r i s e r e s u l t s i n a d e c r e a s e i n the c o n c e n t r a t i o n o f the s o l u t e i n the s u p e r c r i t i c a l p h a s e . However, a t h i g h p r e s s u r e s , a r i s e i n t e m p e r a t u r e causes an i n c r e a s e i n the s o l u b i l i t y because a r i s e i n t e m p e r a t u r e a t c o n s t a n t p r e s s u r e l e a d s to a d e c r e a s e i n gas d e n s i t y , and a t the same time r e s u l t s i n an i n c r e a s e i n t h e v a p o r p r e s s u r e o f the s o l u t e . The r e d u c t i o n i n gas d e n s i t y , due t o an i n c r e a s e i n t e m p e r a t u r e , becomes l e s s a t h i g h e r p r e s s u r e s t h a n a t low p r e s s u r e s . So, the i n c r e a s e i n v a p o r p r e s s u r e o f the s o l u t e overcomes the d e c r e a s e i n gas d e n s i t y and l e a d s to a h i g h e r c o n c e n t r a t i o n i n the s u p e r c r i t i c a l p h a s e . Potential

Citrus Oil Applications

A p p l i c a t i o n s o f s u p e r c r i t i c a l f l u i d e x t r a c t i o n to e s s e n t i a l o i l p r o c e s s i n g have been d e s c r i b e d i n r e c e n t l i t e r a t u r e r e f e r e n c e s ( 3 9 - 4 3 ) . However, the l i t e r a t u r e l a c k s d e t a i l e d d a t a on multicomponent c i t r u s e s s e n t i a l o i l s w i t h s u p e r c r i t i c a l c a r b o n dioxide. S t a h l and G e r a r d (39) used pure e s s e n t i a l o i l components

In Supercritical Fluid Extraction and Chromatography; Charpentier, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

11β

SUPERCRITICAL FLUID EXTRACTION AND CHROMATOGRAPHY

d (g/cm ) 3

Downloaded by UNIV OF SOUTHERN CALIFORNIA on July 26, 2013 | http://pubs.acs.org Publication Date: March 17, 1988 | doi: 10.1021/bk-1988-0366.ch006

0.1

0.150.20.30.50.6

0.7 0.75

Ρ(bar)

F i g u r e 2. S o l u b i l i t y i s o t h e r m s o f e s s e n t i a l o i l components i n dense carbon d i o x i d e a t 40°C; (1) limonene, (2) c a r v o n e , (3) c a r y o p h y l l e n e , ( 4 ) v a l e r a n o n e (Reproduced w i t h p e r m i s s i o n from Ref. 39. C o p y r i g h t 1985 S. A l l u r e d ) .

In Supercritical Fluid Extraction and Chromatography; Charpentier, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

Downloaded by UNIV OF SOUTHERN CALIFORNIA on July 26, 2013 | http://pubs.acs.org Publication Date: March 17, 1988 | doi: 10.1021/bk-1988-0366.ch006

6.

TEMELLI ET AL.

Supercritical

Carbon Dioxide

Extraction

117

to study t h e i r s o l u b i l i t y in dense carbon dioxide. They showed that the separation of sesquiterpene hydrocarbons and oxygenated monoterpenes i s d i f f i c u l t since t h e i r s o l u b i l i t y behavior and vapor pressures are almost the same and made t h i s separation possible by using t h e i r differences in p o l a r i t y and saturating the carbon dioxide with water. Stahl and Gerard (39) concluded that fractionation i s possible at 7-8 MPa and 40°C in that monoterpenes, monoterpene derivatives and sesquiterpene hydrocarbons can be extracted with dry s u p e r c r i t i c a l COo leaving oxygenated sesquiterpenes behind. Coppella ana Barton (40) studied the vapor-liquid equilibrium for lemon o i l and carEbn dioxide at 30-40°C and 4-9 MPa. They used the Peng-Robinson equation of s t a t e , treating the system as (^ilimonene binary with temperaturedependent interaction parameter to model the system. They determined the r e l a t i v e v o l a t i l i t i e s of terpinolene to c i t r o n e l l a l as 2 and limonene to geranial as 5. Robey and Sunder (41J have used the s u p e r c r i t i c a l carbon dioxide extraction technique to separate lemon o i l into i t s f r a c t i o n s . The terpene f r a c t i o n was p r e f e r e n t i a l l y s o l u b i l i z e d at a l l operating conditions t e s t e d . They studied the effects of varying the extraction temperature between 40 and 90°C and determined that y i e l d increased. The same trend was true for the separation factor of 1imonene/citral. F i t t i n g an equation of state to the data showed that those temperature-pressure regions giving high t o t a l s o l u b i l i t y also tend to give poor selectivity. In general, terpene hydrocarbons can be extracted from cold-pressed c i t r u s o i l s under conditions close to the c r i t i c a l point of carbon dioxide. Temperatures should be within the range 31 to 70°C, since c i t r u s o i l s begin to suffer thermal degradation above t h i s l i m i t . Extraction pressures should be between 7.4 to 13.0 MPa; since at high pressures the increased density of carbon dioxide increases s o l u b i l i t y of the oxygenated compounds making f r a c t i o n a t i o n impossible. Another factor in determining the extraction pressure i s related to economic considerations, since construction and operating costs increase with higher system pressures. Gerard (42) described a continuous, countercurrent high-pressure extraction column with b u i l t - i n b a f f l e s to enlarge the surface area and a reflux of the top product. He proposed an extraction pressure of 8 MPa and temperature of 60 to 70°C which would give the advantage of reaching a higher loading of the gas phase and the p o s s i b i l i t y of creating a reflux by cooling the column head. Robey and Sunder (41) used a computer program to simulate a multistage column to proïïïïce a t e n - f o l d concentration of oxygenated compounds in lemon o i l and showed that a countercurrent column operating at 10.3 MPa and 60°C, with 12 stages and reflux would produce the desired product at 99% y i e l d . Extraction System The S u p e r c r i t i c a l Extraction Screening System with a 300 mL extraction chamber designed by the Autoclave Engineers, Inc. ( E r i e , Pennsylvania) was used (Figure 3 ) . After some m o d i f i c a t i o n s , the system could be used both as a s t a t i c c e l l and as a dynamic flow

In Supercritical Fluid Extraction and Chromatography; Charpentier, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

In Supercritical Fluid Extraction and Chromatography; Charpentier, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

UquM C O

z

Pump

-ODO—'

Preheater

Back pressure L regulator

Extractor

w

r

Η W

Downloaded by UNIV OF SOUTHERN CALIFORNIA on July 26, 2013 | http://pubs.acs.org Publication Date: March 17, 1988 | doi: 10.1021/bk-1988-0366.ch006

124

SUPERCRITICAL FLUID EXTRACTION AND CHROMATOGRAPHY

A l t h o u g h the amount o f e x t r a c t was l i n e a r i n the 5 hour p e r i o d , i t p r o b a b l y w i l l n o t be over a l o n g e r p e r i o d o f t i m e . In a b a t c h s y s t e m , s i n c e the c o m p o s i t i o n o f the feed o i l w i l l change w i t h t i m e , the amount o f oxygenated compounds i n t h e e x t r a c t a l s o w i l l c h a n g e . Based on these a s s u m p t i o n s , i t was found t h a t a t l e a s t 50 hours o f e x t r a c t i o n would be n e c e s s a r y t o o b t a i n a 5 - f o l d o i l a t a f l o w r a t e o f 500 m L / m i n . However, l e a v i n g the o i l a t 70°C f o r 50 hours would probably r e s u l t i n the formation of u n d e s i r a b l e terpene degradation products. T h e r e f o r e , no attempt was made to produce a 5 - f o l d o i l w i t h the system d e s c r i b e d . In c o n c l u s i o n , i t i s p o s s i b l e to c o n c e n t r a t e the f l a v o r f r a c t i o n o f cold-pressed c i t r u s o i l s with s u p e r c r i t i c a l f l u i d t e c h n o l o g y by s e l e c t i v e l y e x t r a c t i n g the t e r p e n e s from the o i l . D u r i n g c o n t i n u o u s e x t r a c t i o n s , t h e amount o f e x t r a c t f o l l o w e d a l i n e a r t r e n d w i t h time o v e r the f i r s t 5 h o u r s o f e x t r a c t i o n and i t i n c r e a s e d f i v e times when t h e f l o w r a t e was i n c r e a s e d t e n t i m e s . S i n c e the d e s i g n o f s u p e r c r i t i c a l f l u i d e x t r a c t i o n and s o l v e n t r e g e n e r a t i o n processes f o r the c o n c e n t r a t i o n o f c i t r u s o i l s r e q u i r e a c c u r a t e c a l c u l a t i o n o f phase e q u i l i b r i a , more r e s e a r c h must be done to d e t e r m i n e t h e e q u i l i b r i u m s o l u b i l i t y d a t a , t h e thermodynamic model to r e p r e s e n t the s y s t e m , and the economic f e a s i b i l i t y o f the process. Literature 1. 2. 3.

4.

5. 6. 7. 8. 9. 10. 11.

12. 13. 14. 15.

Cited

Matthews, R. F.; Braddock, R. J. Food Technol. 1987, 41(1), 57. Braddock, R. J.; Miller, W. M. J. Food Sci. 1982, 47, 2008. Kesterson, J. W.; Braddock, R. J. "By-Products and Specialty Products of Florida Citrus", Univ. of Fla. Agric. Exp. Stn. Tech. Bull. 784: Gainesville, 1976, 122 pp. Kesterson, J. W.; Hendrickson, R.; Braddock, R. J. "Florida Citrus Oils", Univ. of Fla. Agric. Exp. Stn. Tech. Bull. 749: Gainesville, 1971, 180 pp. Braddock, R. J.; Kesterson, J. W. J. Food Sci. 1976, 41, 1007. Shaw, P. E.; Coleman, R. L. J. Agr. Food Chem. 1974, 22(5), 785. Berry, R. E.; Shaw, P. E.; Tatum, J. H.; Wilson III, C. W. Food Technol. 1983, 37(12), 88. Braddock, R. J.; Kesterson, J. W. Proc. Fla. State Hort. Soc. 1976, 89, 196. Shaw, P. E.; Moshonas, M. G. Mass Spectrom. Rev., 1985, 4, 397. Shaw, P. E. J. Agr. Food Chem. 1979, 27, 246. Shaw, P. E. In "Citrus Science Technology"; Nagy, S.; Shaw, P. E.; Veldhuis, Μ. Κ., Eds.; AVI: Westport, 1977; Vol. 1, pp. 427-462. Buckholz, L. L.; Daun, H. K. J. Food Sci. 1978, 43, 535. Bernhard, R. Α.; Marr, A. G. Food Res. 1960, 25, 517. Newhall, W. F.; Kesterson, J. W. Proc. Fla. State Hort. Soc. 1961, 73, 239. Tatum, J. H.; Nagy, S.; Berry, R. E. J. Food Sci. 1975, 40, 707.

In Supercritical Fluid Extraction and Chromatography; Charpentier, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

6.

T E M E L L I ET AL. Supercritical

Carbon Dioxide

Extraction

Downloaded by UNIV OF SOUTHERN CALIFORNIA on July 26, 2013 | http://pubs.acs.org Publication Date: March 17, 1988 | doi: 10.1021/bk-1988-0366.ch006

16.

125

Guenther, Ε. "The Essential Oils", 2nd ed.; Robert Ε. Krieger Publishing Co.: New York, 1972; Vol. 1, pp. 218. 17. Braddock, R. J. In "Citrus Nutrition and Quality"; Nagy, S.; Attaway, J. Α., Eds.; ACS Symposium Series, No. 143, 1980, pp. 273-288. 18. Lifshitz, Α.; Sterak, Y.; Elroy, I. Perf. & Ess. Oil Rec. 1969, 60, 157. 19. Vora, J. D.; Matthews, R. F.; Crandall, P. G.; Cook, R. J. Food Sci. 1983, 48, 1197. 20. Owusu-Yaw, J.; Matthews, R. F.; West, P. F. J. Food Sci. 1986, 51, 1180. 21. Kirchner, J. G.; Miller, J. M. Ind. Eng. Chem. 1952, 44(2), 318. 22. Lijn, J.; Lifshitz, A. Lebensm.-Wiss. u. Technol. 1969, 2, 39. 23. Ferrer, O. MS thesis, University of Florida, Gainesville, FL., 1984. 24. Rizvi, S. S. H.; Daniels, J. Α.; Benado, A. L.; Zollweg, J. A. Food Technol. 1986, 4 0 ( 7 ) , 57. 25. Rizvi, S. S. H.; Benado, A. L.; Zollweg, J. Α.; Daniels, J. A. Food Technol. 1986, 40(6), 55. 26. Williams, D. F. Chem. Eng. Sci. 1981, 36, 1769. 27. Paulaitis, M. E.; Krukonis, V. J.; Kurnik, R. T.; Reid, R. C. Rev. Chem. Eng. 1983, 1(2), 179. 28. Zosel, K. In "Extraction with Supercritical Gases"; Schneider, G. M.; Stahl, E.; Wilke, G., Eds.; Verlag Chemie: Deerfield Beach, 1980; pp. 1-23. 29. Caragay, A. B. Perfumer & Flavorist Aug/Sep 1981, 6, 43. 30. Eldridge, A. C.; Friedrich, J. P.; Warner, K.; Kwolek, W. F. J. Food Sci. 1986, 51, 584. 31. Friedrich, J. P.; Pryde, E. H. J. Am. Oil Chem. Soc. 1984, 61(2), 223. 32. Bulley, N. R.; Fattori, M.; Meisen, Α.; Moyls, L. J. Am. Oil Chem. Soc. 1984, 61(8), 1362. 33. List, G. R.; Friedrich, J. P. J. Am. Oil Chem. Soc. 1985, 62(1), 82. 34. Stahl, E.; Schutz, E.; Mangold, H. K. J. Agric. Food Chem. 1980, 28(6), 1153. 35. Hubert, P.; Vizthum, O. G. Angew. Chem. Int. Ed. Engl. 1978, 17, 710. 36. Harold, F. V.; Clarke, B. J. Brewer's Digest Sep. 1979, pp. 45. 37. Grimmet, C. Chem. Ind. May 1981, 359. 38. Weast, R. C.; Astle, M. J.; Beyer, W. Η., Eds. "Handbook of Chemistry and Physics", 67th ed.; CRC Press, Inc.: Boca Raton, 1986. 39. Stahl, E.; Gerard, D. Perfumer & Flavorist Apr/May 1985, 10, 29. 40. Coppella, S. J.; Barton, P. In "Supercritical Fluids: Chemical Engineering Principles and Applications"; Squires, T. G.; Paulaitis, Μ. Ε., Eds.; ACS Symposium Series, No. 329, 1987, pp 202-212.

In Supercritical Fluid Extraction and Chromatography; Charpentier, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

126 41.

42. 43. 44.

SUPERCRITICAL FLUID EXTRACTION AND

CHROMATOGRAPHY

Robey, R. J.; Sunder, S., presented in part at the annual meeting of the American Institute of Chemical Engineers, San Fransisco, 1984. Gerard, D. Chem. Ing. Tech. 1984, 56, 794. Stahl, E.; Quirin, K. W.; Glatz, Α.; Gerard, D.; Rau, G. Ber. Bunsenges. Phys. Chem. 1984, 88, 900. McHugh, M.; Krukonis, V. J. "Supercritical Fluid Extraction Principles and Practice", Butterworth Publishers: Boston, 1986. October

9,

1987

Downloaded by UNIV OF SOUTHERN CALIFORNIA on July 26, 2013 | http://pubs.acs.org Publication Date: March 17, 1988 | doi: 10.1021/bk-1988-0366.ch006

RECEIVED

In Supercritical Fluid Extraction and Chromatography; Charpentier, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.