Unified MPLS


[PDF]Unified MPLS - Rackcdn.com249459ec2cf8839ca4b8-2690f879103214107f979ba5105d745b.r47.cf2.rackcdn.co...

24 downloads 301 Views 13MB Size

EVOLVED  PROGRAMMABLE  NETWORK   FOR  MOBILE  BACKHAUL  SERVICES     ALEXANDER  PREUSCHE   CSE  SP  ARCHITECTURES  

 

03  NOVEMBER  2014  

Agenda   •  EvoluBon  and  Trends  in  Mobile  Networks   –  Requirements  with  LTE/LTE-­‐A  &  Small  Cells  

•  •  •  • 

Evolved  Programmable  Network  &  Unified  MPLS   EPN  Product  PorRolio   Key  InnovaBons  with  SDN  &  NfV   Summary  

EVOLUTION  AND  TRENDS     IN  MOBILE  NETWORKS  

The  Future  of  Mobility  –  2018  perspecBve   By  2018,  mobile  data  traffic   per  month  will  reach    

15.9  Ebs  

11-­‐fold  growth  from  2013   1000-­‐fold  from  2005  

By  2018,  over  

50%  of  Mobile   Traffic  will  come   from  4G  

By  2018,  there  will  be  more  

10  billion   50  billion  connected   than   total   mobile-­‐ready  devices   things  by  2020  -­‐  IoE  

By  2018,     2/3  of  the  world’s   mobile  data  traffic  will  be  

video    

  Streaming  Audio  account   for  10%+   Source: Cisco Visual Networking Index 2014 http://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html

Access  Technology  –  Defined  by  Traffic  Growth   Macro  

18x  Growth   Ubiquitous   Coverage  

Growth  

1000   100  

2G/3G/4G  

Macro  Capacity  

10  

Spectrum   1

1990

1995

2000

2005

2010

Source:  Agilent  

2015

Overall  Capacity  Not  Keeping  Pace   with  Data  Demand  

High  Bandwidth  

Consumer  

Business  

Community  

Small  Cells  Increase     ExisBng  Capacity  &  Coverage  

Comprehensive  architecture  combining  licensed  and  unlicensed  

 Small  Cell  Backhaul  Requirements   Aspect  

Small  Cell  Requirement  compared  to  Macro  Cells  

LocaBon  

InstallaBon  at  Street  Level  LocaBons  

Coverage  &  ConnecBvity  

Last  mile  coverage  to  small  cells  at  street  level  as  opposed  to  roofop  

QoS  Support  

User  Experience  on  Small  Cell  should  be  same  as  on  Macro  cells  

Capacity  Provisioning  

Higher  Spectral  Efficiency;  lower  mean  throughput  than  macro  during  busy   Bme  but  similar  peak  

Availability  &  Resiliency  

Lower  availability  is  acceptable  when  enhancing  macro  capacity  (overlapping   coverage)  

SynchronizaBon  

Similar  BH  Sync  requirements  as  Macro;  Phase  required  for  TDD-­‐LTE  

Security  

IPSec  mandatory  when  BH  over  untrusted  network  

OAM  

Consolidated  management  important  for  high  scale  Small  Cells  

Small  Cell  Backhaul  Architecture   Fiber  connected   Drop  &  ConPnue  

NLoS/ LOS  

ASR901S   ASR901S  

ASR901S  

ASR901S  

Macro  Site  Router   ASR901  

ASR901S  

NLoS  

ASR901S  

P2MP  NLoS  

fiber  

ASR901S  

Macro  Site  Router   ASR901   ASR901S  

mmW  connected   Drop  &  ConPnue  

NLoS   ASR901S  

ASR901S  

IP/MPLS   Transport  

    Pre-­‐aggregaPon   IP/MPLS   ASR903   Transport  

mmW   ASR901S  

Macro  Site  Router   ASR901  

Fixed  (DSL/GPON/DOCSIS)  

Aggregation Node ASR 903/901

IP/MPLS   Transport   AggregaPon   ASR9000  

Mobile  Core  Node  

Various  Backhaul  Access  Technologies   Transport  type   E1/T1  

Capacity  

Latency    

n  x  2Mbps    

<10mS  

Direct  Fiber  

100Mbps-­‐Gbps  

<1mS  

FTTx  (GPON)  

2.5Gbps/1.5Gbps  

1-­‐7mS  

285Mbps/105Mbps   (75Mbps  symmetrical)  

<20mS  

xDSL  (VDSL2)  

Rate  reach  dependent   >100Mbps/20Mbps  for  2Kf   (bonded  VDSL2)  

5-­‐15mS  

uWave  

>1Gbps  

<1mS  

Sub-­‐6  GHz  

<500Mbps  

DOCSIS3.0  

5mS                 (1-­‐way)    

Air  Range  

2-­‐4km   <500m  

LTE  Any-­‐to-­‐Any  ConnecBvity  &   X2  Interface  Requirements   •  In  R8/9  –  Today,  X2  is  mainly  used  for:  

 

-  Mobility  management/Handover   -  Load  management/Error  reporBng    

X2  

•  LTE  Advanced  (R10/11)  introduces  CoMP  and  ICIC:   -  -  -  - 

CoMP   X2    

X2  

 

Coordinated  MulBpoint  (CoMP)   Improve  cell-­‐edge  and  average  sector  data  rates  via  dynamic  coordinaBon  between  mulBple  network  nodes   Centralized  Joint  Transmission  –  Single  UE  is  served  by  mulBple  eNBs   UE  reports  Channel  State  InformaBon  to  eNBs  –  exchanged  via  X2  

 Requires  direct,  low  latency  x2  communicaPon!   •  X2  “transport"  latency  requirement:

   R8:  20-­‐80ms

 SON  &  R11  CoMP:  1-­‐5ms  

 

-  CoMP  efficiency  decreases  already  with  “any”  delay,  i.e.  5ms  delay  =20%  efficiency  loss

LTE-­‐A  =  Improved  throughput,  lower  interference  and  latency   Provides  a  compeBBve  advantage  to  the  SP  allowing  for  new  services  

SynchronizaBon  Requirements   ApplicaPon  

Phase/Bme  accuracy     is  necessary  

Frequency  

Phase  

UMTS/LTE  FDD  ResidenBal  

NA  /  250  ppb  

NA  

UMTS  Metro  Small  Cell  

NA  /  100  ppb  

NA  

GSM/UMTS/W-­‐CDMA  

NA  

CDMA2000  

+/-­‐  3-­‐10  uS  

TD-­‐SCDMA  

+/-­‐  1.5  uS  

LTE-­‐FDD   LTE-­‐TDD   LTE-­‐A  MBSFN   LTE-­‐A  CoMP  (Network  MIMO)   eICIC  (HetNet  CoordinaBon)  

16ppb  /  50  ppb  

NA   +/-­‐  1.5  uS   +/-­‐  1  uS   +/-­‐  0.5-­‐1.5  uS   +/-­‐  5  uS  

InnovaBon  to  Address  Service  Providers  Challenges  

BUSINESS AGILITY

SDN – Open and Programmable at all Layers Simplify / Reduce Complexity

Service Orchestration

OPERATIONAL SIMPLICITY SDN

¥$£€

MONETIZATION

NFV

Service Orchestration – Customized Delivery Automation / Accelerate Time to Revenue

NFV – Elastic Resource Capacity Reduce Total Costs Across all Services

Mobile  Backhaul  Challenges   Traffic  Growth     High  Scale,  and  Capacity   for  Any  Access   (Macro,  Small  Cell   Wi-­‐Fi)  

 

Convergence     ElasBc   Carrier  Grade     Transport  Architecture   for  any  Access  

MonePze  &     DifferenPate     Time  to  Market   Programmable   Simplify  Management  &   Lower  TCO  

EVOLVED  PROGRAMMABLE   NETWORK  &  UNIFIED  MPLS    

Entering  a  New  Era  in  the  SP  Network  EvoluBon   ISDN Frame Relay

APPLICATIONS  

IP  Core  

QAM

ATM

DS0, DS1, DS3 Muxs

SMDS PSTN

Edge  

EVOLVED  SERVICES  PLATFORM  

X.25 Access/   Agg   IPv6  

EVOLVED  PROGRAMMABLE  NETWORK  

TDM  Era   § 

§  § 

IP  NGN  Era   Managed   Managed   §  CommodiBzaBon  of  IP  services  

TDM  rigidity  limits  new  services,   forces  architectural  shif   Voice  Centric  

plus  high  traffic  growth  limits  

profitability   Configurable   Configurable  

§  Network  migraBon  to  mulB-­‐ Defined  by  reliability   Apps   f  f  N Apps  IIndependent   ndependent  ooservice   Network   etwork   transport  &  a  single  

§  § 

Take  advantage  of  the  shif  from  staBc  connecBvity  to  virtualized   Orchestrated  with  Self-­‐service     service  creaBon  

§ 

EPN  becomes   he    N flexible   network   fabric  linking  data  centres  with  SP   App  t& etwork   InteracBon   networks  

protocol  

Command   Command  LLine   ine   nterface   §  IInterface   Data  Centric   § 

Defined  by  convergence  and  

Proprietary   Proprietary   scale  

Autonomic,   with  Ccentric   ontrol   &  Visibility   Move   into  an  applicaBons   service   environment  

§ 

ApplicaBon   centric  ProgrammaBc  Interfaces   Well-­‐known  

§ 

Defined  as  programmaBc  and  dynamic  

Open  &  Pluggable  

Open  Network  Strategy  

Open SDN/NFV Innovations for an Evolved Programmable Network On-­‐Demand  

Automated  

Always  “ON”  

Dynamic  Scale  

Fully     Virtualized  

Intelligent   Convergece  

ACCELERATE  

Policy  

Services  Anywhere  

Open  and     Programmable  

Real-­‐Time  AnalyBcs  

ApplicaBon  

Ultra  HD      

Seamless  

InteracBon  

Experience   VM

VM

CDN  

M2M  

Core  

ApplicaBons  

OPTIMIZE  

Edge  

Open APIs

VM   Service     OrchestraBon  Apps  

Service  Catalog   Access  

CORE  

MONETIZE  

£  €   ¥  $  

Open APIs

VM  /    Storage     Control  

Evolved   Services   PlaRorm   NCS   NCS  

Cloud  

EDGE  

Access  

Mobility   Evolved  Programmable  Network  

What  is  the  Cisco  Evolved  Programmable  Network  (EPN)? Network  as  the  Fabric   •  Converged   •  Physical  and  Virtual  

IoE  

Secure  and  Resilient  

•  IPv6   •  SoluBon  scale  with   mulB-­‐chassis  and   nPower  

•  nLight  protecBon  and   restoraBon   •  Encrypted  Transport   •  IPSec  

Programmable  and   Virtualizable   •  Open  APIs   •  VNFs  

CDN  

ApplicaBons  

Open APIs

VM   Service     OrchestraBon  Apps  

Service  Catalog  

CORE  

IPv6  

Open APIs

VM  /    Storage     Control  

Evolved   Services   PlaRorm   NCS   NCS  

EDGE  

Access  

Evolved  Programmable  Network  

EVOLVED  PROGRAMMABLE  NETWORK  

“Unified  MPLS…classical  MPLS  with  a  few  addiBons”   Classical MPLS IGP/LDP Domain isolation

RFC 3107

BGP filtering

Flex Access

LFA R-LFA

BGP PIC

E2E OAM

L2/IGP/BGP/MPLSTP/LDP DoD

Unified MPLS

Architecture

Scalability

Security

Simplification

Multi-Service

U-MPLS

Unified  MPLS  Architecture  

IGP/LDP Label BGP3107 Label Service Label

                                         iBGP/eBGP  

Access Node

EPC Gateway

Pre-Aggregation Node

Access Node

Access Network

Aggregation Network

IGP/LDP    

Aggregation Node

Core ABR

IGP/LDP    

L2

Massive     Scale     100,000+   Nodes!  

Core Network

Flexibility    

Any  Media   Any  Access   Any  Service  

Centralised RR IGP/LDP    

Simplicity    

Autonimic  Networking   LFA/R-­‐LFA   PRIME   nV  

Programmability  

 

Netconf/Yang   BGP-­‐LS/PCEP  

MPLS

Sample  E2E  Unified  MPLS  Architecture  

RouBng  IsolaBon  and  Label  Stack  for  LSP  between  Pre-­‐Agg.  Node  Loopbacks     AggregaPon     Network  

Access   Network    

Core  ABR   (Inline  RR)  

Agg.  Node   IGP/LDP Label

Push

BGP3107 Label

Push

Swap

Core  ABR   (Inline  RR)  

MPC     Gateway  

Core  ABR   (Inline  RR)   Pop

Push

Centralised  RR   Swap

Swap

Pop

Access   Network     Pre-­‐Agg.     Node  

Agg.  Node  

L2  

ISIS  Level  1/OSPF  x  

ISIS  Level  2/OSPF  0  

ISIS  Level  1/OSPF  x  

L2   Access     Node  

Core  Network    

Agg.  Node  

Pre-­‐Agg.    Node  

  AggregaPon     Network  

Core  ABR   (Inline  RR)   Swap

Access     Node  

Agg.  Node   Swap

Pop

Service Label

LDP LSP

LDP LSP

LDP LSP

BGP LSP

No  IGP  route  is  propagated  from  AggregaBon  to  the  Core.  IGP  area  has  routes  for  that  area  only  plus  routes   to  core  ABRs.  Only  the  core  ABR’s  are  propagated  from  L2  to  L1   • 

LDP  labels  are  used  to  traverse  each  domain  and  reach  core  ABRs  

• 

BGP  labels  are  used  by  Labeled  BGP  PEs  &  ABRs  to  reach  Labeled  BGP  PEs  in  remote  areas  

• 

Service  (e.g.  PW)  labels  are  used  by  Label  BGP  PEs  

High  Availability  with  Unified  MPLS   Access Network

Aggregation Network

PAN Inline RR ç next-hop-self è CSG  

Core Network

Aggregation Network

CN-ABR Inline RR ç next-hop-self è

CN-ABR Inline RR ç next-hop-self è

iBGP   IPv4+label  

Access Network PAN Inline RR ç next-hop-self è

iBGP   IPv4+label  

iBGP   IPv4+label  

CN-RR RR  

FTTB   iBGP   IPv4+label  

iBGP   IPv4+label  

CSG  

CSG   MTG AGN-SE

FTTB  

Mobile Packet Core

AGN-SE

CSG  

SGW/PGW

MME iBGP Hierarchical LSP!

LDP LSP !

LDP LSP !

BGP  FRR  Edge     <100  msec    

LDP LSP !

BGP  FRR  Core   <100  msec    

LDP LSP !

LDP LSP !

LFA  FRR,  Remote-­‐LFA  FRR   <  50msec    

21  

Unified  MPLS  Architecture   Summary  

Simplified  MPLS  Transport  with  E2E  OAM,  performance   Access   Layer  

Cell   Site  

  AggregaPon     node  

Etherne t  uW  

Cell  site     Router  

AggregaPon   Layer  

Pre-­‐AggregaPon   Layer  

PGW     SGW  

DistribuPon    

Core   Layer  

  node   management,  provisioning  with  seamless  resiliency

Core     node  

Ring   Fibre  

Flexible  L2  &  L3  transport  virtualisaBon  to  support  GSM,  3G  &  LTE,  

Sample  RouPng  Architecture   Access  Node  

Access   Network     Access  Node  

IGP/LDP    

iBGP/eBGP  

wholesale  &  retail  opBons  

Core  ABR  

  AggregaPon  Network  

EPC  Gateway  

Core  Network     Core  ABR  

Scale  for  MPLS  transport  and  opBmal  rouBng  through  RFC  

New  levels  of   L2  

Pre-­‐AggregaBon    Node  

AggregaBon  Node  

AggregaBon  Node   IGP/LDP    

3107  with  BGP  hierarchical  LSPs    

Centralised  RR   IGP/LDP    

LTE  S1  and  X2  MPLS  VPN  Service  Scale  Control   Export:  RAN  W  RT,  Common  RT   Import  RAN  W  RT,  MTG  RT  

Core Domain

Aggregation Domain

Export:  RAN  Y  RT,  Common  RT   Import  RAN  Y  RT,  MTG  RT  

Aggregation Domain

MME VRF  

MTG

VRF   VRF  

VRF  

VRF  

LTE Transport MPLS VPNv4/v6

MTG VRF  

SGW/PGW VRF  

VRF  

VRF  

SGW/PGW VRF  

•  Unified MPLS transport with a

VRF  

MTG

VRF  

Export:  RAN  X  RT,  Common  RT   Import  RAN  X  RT,  MTG  RT  

VRF   VRF  

Export:  MTG  RT   Import:  MTG  RT,  Common  RT  

VRF  

VRF  

Export:  RAN  Z  RT,  Common  RT   Import  RAN  Z  RT,  MTG  RT  

common MPLS VPN for LTE S1 from all CSGs and X2 per LTE region

•  Mobile Transport GWs import all RAN & MPC Route Targets, and export prefixes with MPC Route Target •  CSGs (and Pre-Aggregation Node) in a RAN region import the MPC and neighboring RAN Route Targets:

Enables S1 control and user plane with any MPC locations in the core Enables X2 across CSGs in the RAN region

Inter-­‐Access  LTE  X2  –  Labeled  BGP   MTG BGP Community 1001:1001

MTG MTG

CN-RR RR

CN-ASBR Inline RR

CN-ASBR Inline RR AGN-ASBR Inline RR

AGN-ASBR Inline RR

Metro-1

AGN-RR

Access-2

VRF

X2 Unified MPLS Transport: Advertise loopbacks in iBGP labeledunicast with community 10:10, 10:102

VRF

LTE MPLS VPN Service: Export: RAN-2 RT, Common RT Import RAN-1 RT, RAN-2 RT, RAN-3 RT, MTG RT

S1 traffic

RR

Inter-access X2 traffic

Access-4 Access-3

X2

VRF VRF

X2 inter-access

X2 VRF

VRF

VRF

VRF

Unified MPLS Transport: Advertise loopbacks in iBGP labeledunicast with community 10:10, 10:104

VRF

X2 inter-access

Unified MPLS Transport: Advertise loopbacks in iBGP labeledunicast with community 10:10, 10:103 LTE MPLS VPN Service: Export: RAN-3 RT, Common RT Import RAN-2 RT, RAN-3 RT, RAN-4 RT, MTG RT

LTE MPLS VPN Service: Export: RAN-4 RT, Common RT Import RAN-3 RT, RAN-4 RT, RAN-5 RT, MTG RT

Simplified  MPLS  VPN  Scale  Control  for  LTE   Aggregation Domain

Core Domain

Aggregation Domain

Export:  RAN  Y  RT,  Common  RT   Import  RAN  Y  RT,  MPC  RT  

MME VRF  

MTG

VRF   VRF  

Export:  AGGR  W  RT,   Common  RT   Import  AGGR  W  RT,  MPC   RT  

VRF  

VRF  

LTE Transport MPLS VPNv4/v6

MTG VRF  

SGW/PGW VRF  

VRF  

VRF  

VRF  

SGW/PGW VRF  

VRF   VRF  

MTG

VRF  

Export:  MPC  RT   Import:  MPC  RT,  Common  RT  

VRF  

VRF  

Export:  RAN  Z  RT,  Common  RT   Import  RAN  Z  RT,  MPC  RT  

•  Mobile  Transport  GWs  import  all  RAN  &  MPC  Route  Targets,  and  export  prefixes  with  MPC  Route  Target   •  CSGs  in  a  RAN  region  import  MPC  and  neighboring  RAN  Route  Targets  (Low  Scale  CSGs)  or  AGGR  wide  RT  (High  Scale  CSGs)   –  Enables  S1  control  and  user  plane  with  any  MPC  locaBons  in  core   –  Enables  X2  across  CSGs  in  RAN  and  AGG  region  

The  Autonomic  Networking  Infrastructure   Secured  Discovery  and  ConfiguraBon  

Consistent Reachability

Security

a

Network

• 

SUDI /UDI validation

• 

Domain Certificates

• 

Autonomic Control Plane

Discovery

• 

Channel Discovery

• 

Service Discovery

• 

Autonomic Control Plane

• 

Indestructible, virtual out-ofband channel

Auto-­‐IP  

Minimize  Maintenance  Windows  &  Touch  Points  

LLDP based Auto-IP negotiation

1

L2 Networks are popular in Access Rings since node insertion does not require adjacent node configuration

2

L3 Networks are challenging in Access Rings since node insertion requires adjacent node configuration

3

Auto IP solves this problem for L3 Networks by automatically assigning the IP addresses to adjacent nodes

Easy node insertion and IP address assignment in L3 rings Fast Service Deployments

Autonomic  Network  

Secured  Discovery  and  ConfiguraBon   1

Configuration Engine

2

Auto-discovery and Secure Configuration Channel

3

4

Device shipped from Cisco manufacturing to branch with no configuration Device auto-discovered by neighbors and establishes secure configuration channel Device receives Configuration Engine location and securely registers Device downloads configurations from Configuration Engine

Zero-touch access auto-configuration

Autonomic  MPLS  Access  Networks   TFTP hosting Configurations co TFTP the AN Node

PANs

AN Connected NMS LAN

nfiguration

Unified MPLS Transport Registrar Gateway

Auto-IP Access Node

AN Virtual Out of Band Communication Channel

AN extended over IPv6 GRE tunnel

Syslog

AAA

•  PAN and Access Nodes initiate a Virtual Out of Band (VOBC) communication channel automatically

•  VOB channel relies on IPv6 link local addresses and RPL routing across VRFs and VLANs •  PAN Nodes extend VOBC network space over GRE tunnels to Registrar Gateway •  connects to AAA, Syslog, TFTP Servers and NOC •  Access Node triggers an automatic configuration download and installation from a TFTP server. •  TFTP address learnt from service discovery. •  Auto-IP used in all configurations for seamless new Access Node activation

Ethernet  G.8032  Access  with  Microwave  ACM   •  The Ethernet Access Network adapts intelligently to the

Microwave Capacity drops

Aggregation Node

•  Microwave Adaptive Code Modulation changes due to fading

events are signaled through an Y.1731 VSM to the MPLS Access Node

Aggregation Node

Ethernet interface

3. Policy Logic that updates G.8032 topology and H-QOS

•  The Ethernet Access Nodes can trigger G.8032 failover

below a certain capacity threshold

•  In addition the Access Node can change the Hierarchical 2. Y.1731 VSM Signals the Microwave link speed 1. Microwave Fading

QOS policy on the interface with the microwave system allowing EF traffic to survive despite of the capacity drop.

Microwave  ACM     Extension  for  MulBpoint  Access   EEM Event for specific Path with associated H-QOS actions

•  ACM Signaling: The BW-VSMs are sent with Link ID TLV, specific to the impacted link

•  The EEM Programmable Logic: Microwave Fading

BW-VSM with specific Link ID

Can classify events for specific paths Can adjust accordingly the H-QOS policies in this example

EPN  PRODUCT  PORTFOLIO  

Deliver  Ultra-­‐High  EPN  MulB-­‐Service  Scalability   Convergence  without  Compromise  

Video   High  Scale  by  SoluPon   Architecture    

•  Common  high  scale   control  plane   •  OpBmized  forwarding   resources   •  Scalable  EFP-­‐based   service  terminaBon  

Business  

MulP-­‐service  Hardware   Design      

•  Line  rate  in  the  access   •  Per  service  HW   structures  at  PE   •  Scalable  H-­‐QoS   •  MulBcast  ReplicaBon   •  HW  MAC  Learning  

Cloud  

Mobile   Modular  IOS-­‐XR    

•  Scale  as  you  grow   •  Distribute  processes   between  RP  and  LC   •  Ultra-­‐high  MulB-­‐ Dimension  Scale  with   superior  stability    

•  •  •  • 

HW  Accelerated  Ultra-­‐ High  BFD  and  EOAM   Performance  &  Scale     3.3ms  BFD   3.3ms  CCM   Fast  failure  detecBon   Per  LC  scale  

3.3   ms   Unified   MPLS  

Evolved  Programmable  Network  Family  

MeeBng    the  Needs  of  Today’s  Challenges  and  Tomorrow’s  OpportuniBes  

Multi-Service Core Routing:

UCS

Data Centre Dense 10GE/40GE/100GE

Drives 100GE multi-service density with MC Scale

LAN/SAN Switching Fabric

Nexus

Virtualized Compute

CRS

NCS: Edge Portfolio: Optimized 10GE/100GE Ethernet Density for Scalable Business, Consumer , Mobile, Video

Fixed and Mobile Convergence

ASR Series

Flexible Network Fabric Converging Core, Edge, Optical, Access, and Data Centre

NCS Elastic Access Portfolio: Converged TDM/Ethernet Aggregation

Access

GPON for wholesale and Mobile & Cloud demarc

Monetize IoE Opportunity

WAN + DC Physical and Virtual

Global Visibility and Programmability

Cisco Access and Small Aggregation Portfolio Snapshot Optimized platforms for Mobile, Carrier Ethernet access and aggregation deployment Updated in CY14

New in CY14

Carrier Class Aggregation

ASR 903

Modular chassis

ME 4600 New in CY14

Redundant switch processors

ASR 902

Wide selection of interface types

ME 3800X

Line Rate Performance, Multi-Dimensional Service Scale Coming CY14

FE/GE/10GE Ethernet access

ME 1200E

TDM interface Temperature hardened Low power consumption

New in CY14

ASR901S

ME 2600X

ASR901

ME 3600X

ASR 920 ME 3600X-24CX

ME 3400E

KEY  INNOVATIONS  WITH     SDN  &  NFV  

The  Journey  to  true  SDN/NFV  Service  InnovaBon   Always “On”

Seamless Experience

On Demand Services Anywhere Application Interaction

IPv6  

Networks

Networks

Simplify •  •  •  • 

Convergence / Consolidation Network Function Virtualization Service Chaining Service Orchestration

Accelerate New Services •  •  •  •  • 

Bandwidth on Demand Virtual Managed Services Security Services Premium Mobile Broadband Cloud DVR

Networks Business Applications Integration The network proactively adjusts to the application needs in real time

NfV  (Network  FuncBons  VirtualizaBon)   Network  infrastructure/Service  FuncPons  run  on     Virtualized  x86  compute  plaiorms     Cisco  UCS  

• 

Key  Enabler:  Cloud   –  – 

• 

Benefits:   –  –  – 

• 

Hypervisor  &  x86  compute  hardware   Network  automaBon  /  orchestraBon   Faster  service  provisioning/Agility   Shorter  innovaBon  cycle   CAPEX  &  OPEX  Savings  

SDN  complementary,  but  not  mandatory  

dDOS   VM  

SBC   VM  

Firewall   VM  

NAT   VM  

CGN   VM  

DPI   VM  

IPS   VM  

Virus  Scan  

DHCP   VM  

DNS   VM  

PCRF   VM  

Portal   VM  

WLC   VM  

RaaS   VM  

SDN  Ctrl.  

VM  

BNG   VM  

NMS   VM  

Caching  

CDN   VM  

WAAS   VM  

VM  

VM  

CE  Architecture  EvoluBon:  towards  Cloud-­‐Centric   Rapid  growth  of  the  applicaBons  and  services  in  the  cloud    à     Rapid  deployment  of  the  transport  pipe  between  users  and  the  services  in  the  cloud   Transport  Goal:  Simple  &  programmable,  Cloud  integrated,  Guaranteed  SLA   ESP   Cross-­‐domain  OrchestraBon       SDN  Controllers  

CPE   vCPE   NID  

Access  

AggregaBon  

Core  

AggregaBon  

Cloud  Edge   (distributed  NFVs)   NaBonal  DC  

EPN  (physical  and  virtual)  

Regional  DC  

Access  

CPE   vCPE   NID  

Comparison  of  Some  Leading  SoluBons   REP,  G.8032,  STP   802.1q/.1ad/.1ah  

Fully  distributed  control  plane   (Unified  MPLS)  

L2  Bridging  

Network  Protocols  

Complex •  •  •  •   

Unified  operaBon  across  domains   Full  service,  any  scale,  any  topology,   open,    strict  SLA   Simple  service  provisioning   But  relaBvely  complex  transport  

What  if  we  fix  this?  

•  •  •  •  •  •  •  • 

Simple  per-­‐domain  operaBon   Rich  porRolio,  cheap?   Complex  cross  domain  operaBon,  not  end-­‐to-­‐ end,  mulBple  touch  points   Doesn’t  support  non-­‐Ethernet  service   Limited  network  topology  and  scale   Doesn’t  support  ECMP  and  TE   L2  flooding   L2TP  caveats  

Simple •  •  • 

Simple  network  layer  but   complex  controller  layer   Not  mature  for  large  scale   deployment   Service  SLA?  slow  response   to  the  network  failures  

Segment  RouBng  -­‐  MPLS  EvoluBon  towards  SDN      

•  Forwarding  state  (segment)  established  by  ISIS/OSPF   •  LDP  and  RSVP-­‐TE  are  not  required   •  No  need  to  migrate  to  IPv6  LDP/RSVP!  

•  MPLS  Dataplane  is  leveraged  without  any  modificaBon   •   push,  swap  and  pop:  all  what  we  need   •   ECMP,  PHP,  normal  h/w  behavior  

A  

D    

9001     M  

O  

N   72  

Nodal  segment:  Operator  allocates  a  label  from  the  SR   registry  to  each  node.  For  example  Z  is  given  label  65   [any  packet  with  65  takes  the  shortest  path  to  Z]  

C  

B  

9001   65   Packet  to  Z  

Adjacency  segment:  Node  automaBcally  allocates  a  local  label  for   each  adjacency.  For  example  Label  9001  allocated  for  adjacency  C-­‐O   [9001  is  popped  and  packet  takes  this  link  to  O]   Combining  nodal  and  adjacency  segments  as  labels  stack:   The  state  is  no  longer  in  the  network,  it’s  in  the  packet!  

9001  

Z   P  

65   Packet  to  Z  

65  

65   Packet  to  Z  

Packet  to  Z  

www.segment-­‐rouBng.net  

Transport  Baseline:  Segment  RouBng   •  •  •  • 

Segment  RouBng,  IGP  shortest  path  as  baseline,  SR  traffic  engineering  opBonally   Any  node  to  any  node  transport:  SR  node  label   Service  node  redundancy:  anycast  SR  label     Link  or  node  protecBon  by  topology  independent  fast  reroute  (TI-­‐FRR)  

2   1   3  

6   101  

4   5  

Core  

102  

7  

Service  Nodes   Anycast  label  1001  

DC   IGP/SR  Domain:  single  area  or  process   No  IGP  and  LDP  interacBon,  NO  hierarchy  BGP  and  LDP  LSP   50msec  auto  TI-­‐FRR  

Vision  of  the  EPN  Transport  (CE)  Architecture  EvoluBon   •  Autonomic  Network  (physical):  secure,  auto  discovery,  plug-­‐n-­‐play   •  Segment  rouPng  (transport):  50msec  self-­‐protected,  Agile  on-­‐demand  TE   •  SDN  controller  (service):  service  label  (or  NSH)  with  cloud  integrated   SDN  Controller   DC   Service  label:  100   SR  label:  5001  

VSOC  

ESP-­‐CE  

NFV   Netconf/Yang   Core   [100,5001]  

1   Anycast  SR  label:  5001   Service  label:  100  

2   CE   Distributed  DC   NFV   Simple,  Agile,  Programmable  Transport  

Transport  node  

DC   APIC  

NFV  

Services  moving  to  the  cloud  

Service/gateway  node  

Summary:  the  EPN  Transport  Architecture  EvoluBon     For  the  Era  of  the  SDN/NFV/Cloud   Is  there  a   middle  ground?   Balance

Distributed

CE  

BGP  +    SDN   IGP  SR  

Controller   Netconf/yang  

Segment  RouPng  

Minimal  but  “Sufficient”  distributed  control  plane  intelligence   Centralized  intelligence  on  the  SDN  controller  

Centralized

Thank  you!